Corrections and Minor Revisions of Mathematical Methods in the Physical Sciences, third edition, by Mary L. Boas (deceased)

Updated August 27, 2022 by Harold P. Boas

This list includes all errors known at the stated time of update. In addition to corrections, a few minor revisions for clarity are included. This errata list can be found at
https://haroldpboas.gitlab.io/Boas_MathematicalMethods_errata.pdf.
Please send any additional corrections to boas@tamu. edu.

Page	Location	Correction
viii	Line 20	For "futher" read "further".
ix	Line 15	The opening quotation marks around "To the Student" are reversed.
34	Last line	6^{2} should be 2^{6}.
41	Problem 22	For " n is an even integer" read " s is an even integer".
43	Headline	The page header should say "Section 15" instead of "Section 16".
47	Section 2	In the second line, the symbol i in the parenthetical comment should be in italics.
51	Problem 20	The superscript in $\sin 110^{\circ}$ should be a degree symbol, not the numeral 0 .
51	Figure 5.1	In the first label $(1,1)$ for the point, there is a missing opening parenthesis.
55	Problem 56	Insert parentheses to make the problem read "(angle of z) $=\frac{\pi}{2}$ ".

Page	Location	Correction
57	Example 1	In the final line of the example, delete the spurious period at the beginning of the line.
59	Problem 1	Insert a + sign preceding the ellipsis dots.
69	Problems 17, 18	An arbitrary real constant can be added to the right-hand side.
76	Problems	In the instructions for the problems, for "compare" read "compare with".
79	Problem 12	Insert the missing left parenthesis before each summation sign.
86	Example 2	In the last matrix, element $(3,4)$ should be 10 instead of -20 . In the next line, similarly replace -20 by 10 .
89	Line 5	Replace the reference to (6.24) by (6.13).
121	(6.17)	In the second line, the second expression in parentheses should be $k-\frac{k^{3}}{3!}+\frac{k^{5}}{5!}+\cdots$ with ellipsis dots.
124	Line -6	For "point to pint" read "point to point".
127	Line 6	For "facts from Section 3" read "facts from Sections 3 and 6".
136	Problem 21	In line 2 , insert a missing "of" to read "in the form of a determinant."
139	(9.10)	In the displayed equation and the preceding line, notation of the form $A_{j k}^{\mathrm{T}}$ should be understood as shorthand for $\left(\mathrm{A}^{\mathrm{T}}\right)_{j k}$.
140	Line 5	In the first line of the paragraph titled "Trace of a Matrix", for "or a square matrix" read "of a square matrix".
153	(11.21)	As mentioned on page 50 , the notation λ^{*} is an alternative notation for $\bar{\lambda}$ (the complex conjugate of λ).
167	(12.25)	For $\lambda=1: \mathbf{R}=(X, Y)=(\sqrt{2}, \sqrt{3})$; for $\lambda=6: \mathbf{R}=$ $(3 \sqrt{2},-2 \sqrt{3})$.
168	(12.31)	On both sides of the equation, the variable y should be z.
169	(12.37)	The equation $\mathrm{V}=\left(\begin{array}{rr}8 & -6 \\ -6 & 9\end{array}\right)$ should have the letter V in upright font, not slanted font.
208	Example 6	Two lines after (7.8), at the end of the sentence, insert the parenthesis: (see page 189).
212	Last line	The number 1 should be the letter l. Also replace the final period by a comma and add: and $V=w^{2} l=l^{3} / 2$.
226	(10.3a)	The equations should be $4 z+2 y=0$ and $4 y+2 z=0$.
235	Line -6	In the second integral, $d t$ is missing.
239	Last line	Replace ($\lambda / 2$) in the exponent by λ.
261	Line -8	The expression $r \sin d \theta d \phi$ should be $r \sin \theta d \phi$.
264	Example 3	The density should be stated to be constant. The same comment applies to Example 4 on page 265, to Problem 1 on page 267, to Problem 26 on page 270, to Problem 4 in the Miscellaneous Problems on page 273, and to Problem 17 on page 274.

Page Location

269 Problem 24

306 Example 6
311 Line 2
311 Line 5
312 (9.12)
313 Problem 1
329 Line -6
330 Line - 17
336 Problem 17(g)

336 Problem 3

337 Problem 16(b)

354 Example 2
356 First display

367 Line 4

371 Headline
374 Problem 5

380
381
381
382

387 Problem 4(a)
414 Problem 11
431 Line 8
442 Line 13

Correction

In the fourth line, italicize the first instance of $d M$ to match the second instance.
Replace $r \sin \phi$ by $r \sin \theta$.
For "two of the equations corresponding to (8.17) do not hold" read "one of the equations corresponding to (8.17) does not hold".
For "w" read "we".
Reverse the opening quotation marks of "simply connected".
At the end of the line, $\mathbf{j} x$ should be $\mathbf{j} d x$.
The reference to Figure 9.2 should be to Figure 9.1.
For " $|\mathbf{H}|$ same at all points" read " $|\mathbf{H}|$ is the same at all points".
For earths' read earth's.
The integrand of the first integral on the right-hand side should be $(\mathbf{V} \times \boldsymbol{\nabla} \phi) \cdot \mathbf{n} d \sigma, \operatorname{not}(\boldsymbol{\nabla} \times \boldsymbol{\nabla} \phi) \cdot \mathbf{n} d \sigma$.
In the first displayed equation, the second term on the right-hand side would be clearer with parentheses: $(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{A}$ instead of $\mathbf{v} \cdot \boldsymbol{\nabla}$.
The W at the end of the sentence is a scalar and so should not be boldface.
In the last line, $\sin (x+3 \pi / 2)$ should be $\sin (3 x+3 \pi / 2)$.
In the first displayed equation, the expression $\left.2 \ln x\right|_{0} ^{1}$ should be $\left.2 \ln x\right|_{0} ^{\pi}$ (but the conclusion that the integral diverges to infinity is unchanged).
After "cosine series" add the bracket [(9.5) and the comments following it].
In the page header, read "Section 9" instead of "Section 10".
The instructions imply that the period $2 l$ is equal to $1 / 60$, so the hint should say that the value of l is $1 / 120$, not $1 / 60$.
The exponent should be $i \alpha_{n} x$ with an i.
Both integrals should be with respect to $d \alpha$.
In the second equation, $g_{s}(x)$ should be $g_{s}(\alpha)$.
In the integrand of the first equation, $g_{c}(x)$ should be $g_{c}(\alpha)$.
In the first integral, $d x$ should be $d \alpha$. In the second line, there is a missing right-hand parenthesis in the numerator of the first integral.
The cross reference "from (12.1)" should be "from (12.2)".
The expression for $j_{1}(\alpha)$ should be $(-\alpha \cos \alpha+\sin \alpha) / \alpha^{2}$.
In the differential equation, the lowercase c should be a capital C.
A letter y is missing. The equation should be $4 y^{\prime \prime}+12 y^{\prime}+9 y=0$.
For $p d y / d x$ read $p=d y / d x$.
The period at the beginning of the line belongs at the end of the preceding equation.

Page Location

446 Example 2

Line 1

Line 5
(2.7)

Example 1

515 Polar and ...

Problem 2
Line -5

Problem 18
Problem 3
Problem 3
Line -7

Example 1

Correction

In the first line of the three-line display, the second integral has unbalanced parentheses. It should be $\int_{0}^{t}\left(e^{-\tau}-e^{-2 \tau}\right) e^{-(t-\tau)} d \tau$. The third equation for ρ should have $r^{2} \sin \theta$ instead of $r \sin \theta$. The notation in lines 1,4 , and 7 of the example can be clarified by putting a subscript on the variables: namely, $\left(x_{0}, y_{0}, z_{0}\right)=$ $(-1, \sqrt{3},-2)$ and $\left(r_{0}, \theta_{0}, z_{0}\right)=(2,2 \pi / 3,-2)$ and $\left(r_{0}, \theta_{0}, \phi_{0}\right)=$ $(2 \sqrt{2}, 3 \pi / 4,2 \pi / 3)$.
Line 15 Two lines after the third displayed equation on the page, delete the closing parenthesis preceding the period. In other words, replace the expression $-\mathbf{e}_{r} / r^{2}$) by $-\mathbf{e}_{r} / r^{2}$ without the trailing parenthesis.

Example 1 In line 9, the expression $-\delta_{j n} \delta_{k n}$ should be $-\delta_{j n} \delta_{k m}$. (Change the final subscript from n to m.)
Starting in the middle of line 7, revise as follows: "the z components of \mathbf{U} and \mathbf{V} change sign and the x and y components do not; these are then requirements for all vectors. But the z component of $\mathbf{U} \times \mathbf{V}$ does not change sign while the x and y components do (Problems 3 and 4)." Continue as in the text.
Insert a sentence-ending period after "equations".
The first equation should be parallel to the second one: $Y(x, \epsilon)=$ $y(x)+\epsilon \eta(x)$.
For "nd" read "and".
Delete the z 's in column 3 of the matrix.
In the second paragraph, the cross reference "(3.5) to (3.8)" should be "(3.6) to (3.9)".

Starting at the end of the third line, revise as follows: "If a vector under rotations has the property that under reflections the signs of its components are opposite to those of a displacement vector, then it is called an axial vector." Continue as in the text.
The unit vector \mathbf{e}_{22} should be \mathbf{e}_{2}.
The parenthetical remark should say "from (8.15)" instead of "from (8.11)".

On the right-hand side, after the equals sign, the unit vector \mathbf{e}_{1} should be in boldface type.
The problem should read: Using (10.19), show that $\mathbf{a}^{i} \cdot \mathbf{a}_{j}=\delta_{j}^{i}$.
There is a missing left parenthesis in the binomial coefficient.
Both binomial coefficients are missing a left parenthesis.
In the unnumbered three-line display between (10.3) and (10.4), the integral on the right-hand side of the first line is missing the factor $1 / t^{3}$.

Page Location Correction

567 Problem $1 \quad P_{l}(l)$ should be $P_{l}(1)$, that is, the argument should be "one" instead of "ell".
568 Problems 4,5

582 Problem 16 instead of the number "one".
The last equation should read as follows.
$I=\int_{-1}^{1} f^{2}(x) d x+\left(b_{0}-c_{0}\right)^{2}+\left(b_{1}-c_{1}\right)^{2}+\left(b_{2}-c_{2}\right)^{2}-c_{0}^{2}-c_{1}^{2}-c_{2}^{2}$

Example 1
pp. 588-591

Last line

Problem 4

Line above (10.6) Replace "are are" by "and are".

Problems $2 \& 3$ There is a missing left parenthesis in the binomial coefficient.
Problem 26 In the last sentence, the subscript on j should be the letter "ell" instead of the number "one".
Problem 28 The reference to L24 should be L34. (The reference to L23 is correct.)
The letter T, not explicitly defined, denotes temperature, the same quantity denoted by the generic letter u in equation (1.3) on page 619.
Section 2 At the end of the first paragraph, there is a missing period at the end of the parenthetical sentence.

Page Location Correction

624 After (2.14) In the second line following equation (2.14), the expression that arises when $y=30$ is actually $\frac{1}{2} e^{0}-\frac{1}{2} e^{0}$, not $e^{0}-e^{0}$, but is equal to 0 as claimed.
634 After (4.4)

647 Line 9
649 Line 4
651 Problem 18

652 Problem 22
In the line of text following equation (4.4), for "are are" read "are".
The first sum should say $\sum_{n=1}^{\infty}$, not $\sum_{n_{1}}^{\infty}$.
Problem 12 In the second line, the reference to the nonexistent equation (2.25) should be (2.15).
For coskvt/a read $\cos k v t / a$ with "cos" in upright font.
Replace 1^{1} by 1^{2}.
Insert a space following the italicized word harmonics.
The delimiters are unmatched in the displayed equation: the expression $[V(r)-E)$ should be $[V(r)-E]$.
In the line following the displayed equation, the quantity α^{2} should be the reciprocal of what is indicated: namely, $-\hbar^{2} /(2 M E)$.
655 Figure 8.4
In the caption, "FIgure" should be "Figure" (lowercase i).
669 Example 2

671 Last paragraph

Problem 5
677 Problem 9
677 Problem 14

696 Example 6

711 Example 1
Line 5 should read: "at any point of the plate [see equation (13.3.7)]."

730 Last line For "apace" read "space".
733 Line -13 In the displayed formula for $P(A)$, the factor (0.095) should be instead (0.95). The final answer 0.0755 is correct.

Page Location

Correction

753 Example 4

787 Problem 8.23
787 Problem 10.3
792 Problem 10.5
799 Problem 11.23

800 Problem 5.6

800
Problem 8.4 The answer should be $\frac{d r}{d \theta}=\frac{r \sqrt{r^{4}-K^{2}}}{K}$.

Page Location

800 Problem 4.6

Problem 9.5 The answer assumes a Poisson distribution. It is arguable whether that probability model is appropriate in this problem.

