Welcome to Math 171

> Math $3^{2} \times 19$
> Section $2^{9}-9$
> Harold P. Boas

Two warm-up puzzles

1. Which figure has the largest area?

2. If $f(x)=\frac{1}{1-x}$, find the composite function $f \circ f \circ f$.

Answers: The square has the largest area, and $f \circ f \circ f(x)=x$.

Vectors

The Irish mathematician William Rowan Hamilton (1805-1865) introduced the words vector and scalar in mathematics.

A vector has both a magnitude and a direction.
A scalar is just a number, without a direction.
Examples

- velocity
- force

Notation for vectors

The textbook denotes vectors with boldface letters, like \mathbf{v}. For writing by hand, a better notation is \vec{v}.

A two-dimensional vector \vec{v} has two components v_{1} and v_{2} representing horizontal and vertical displacements.

The textbook uses angle brackets to represent a vector in terms of components: $\vec{v}=\left\langle v_{1}, v_{2}\right\rangle$.

Example: The vector $\langle 2,3\rangle$ represents a motion of 2 units to the right and 3 units up.

Magnitude (length)

If $\vec{v}=\left\langle v_{1}, v_{2}\right\rangle$, then the magnitude of \vec{v} is given by the Pythagorean law as $\sqrt{v_{1}^{2}+v_{2}^{2}}$.

Notation for magnitude: either $|\vec{v}|$ or $\|\vec{v}\|$.
Example: If $\vec{v}=\langle 3,4\rangle$, then $|\vec{v}|=5$.

Standard basis vectors

Traditionally, \mathbf{i} or $\vec{\imath}$ means the vector $\langle 1,0\rangle$, and \mathbf{j} or $\vec{\jmath}$ means $\langle 0,1\rangle$.
So $\langle 2,3\rangle$ and $2 \vec{\imath}+3 \vec{\jmath}$ mean the same thing.

The algebra of vectors

Example: If $\vec{v}=2 \vec{\imath}+3 \vec{\jmath}$, and $\vec{w}=4 \vec{\imath}-\vec{\jmath}$, then $5 \vec{v}-2 \vec{w}=2 \vec{\imath}+17 \vec{\jmath}$.
Vector addition is commutative and associative, and scalar multiplication distributes over vector addition.

Assignment

In section J. 1 do odd-numbered problems 1-15 and check your answers in Appendix L.
(not to hand in)

