Recap from yesterday

A vector has a magnitude and a direction.
Example
If $\vec{v}=\langle 2,3\rangle=2 \vec{\imath}+3 \vec{\jmath}$, then $|\vec{v}|=\sqrt{2^{2}+3^{2}}=\sqrt{13}$.

Unit vectors, parallel vectors

If $|\vec{v}|=1$, then \vec{v} is a unit vector.
The vector $\frac{\vec{v}}{|\vec{v}|}$ is a unit vector that points in the same direction as \vec{v}.

In general, vectors \vec{v} and \vec{w} are parallel if they point in the same direction.

Work done by a force

Physics says that

$$
\text { work }=\text { force times displacement }
$$

when the force and the displacement are in the same direction.
In general, only the component of the force in the direction of the displacement contributes to the work.

$$
\text { Work }=|\vec{F}||\vec{D}| \cos (\theta)
$$

Dot product (also called scalar product)

The formula for work motivates an operation that takes two vectors as input and produces a scalar as output:

$$
\vec{v} \cdot \vec{w} \stackrel{\text { definition }}{=}|\vec{v}||\vec{w}| \cos (\theta)
$$

where θ is the angle between the two vectors.

Example

$$
\vec{v} \cdot \vec{w}=1 / 2
$$

A component formula for the dot product

If $\vec{v}=\left\langle v_{1}, v_{2}\right\rangle$ and $\vec{w}=\left\langle w_{1}, w_{2}\right\rangle$, then

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2} .
$$

Example
If $\vec{v}=\langle 3,3\rangle$ and $\vec{w}=\langle 2,0\rangle$, what is the angle between \vec{v} and \vec{w} ?
Answer: $\pi / 4$ radians

Projection

> The $\vec{\imath}$ component of \vec{v} equals $|\vec{v}| \cos (\theta)$, or $\vec{v} \cdot \vec{\imath}$.

The component of \vec{v} in the direction of \vec{w} equals $|\vec{v}| \cos (\theta)$, or $\vec{v} \cdot \frac{\vec{w}}{|\vec{w}|}$
(the dot product of \vec{v} with a unit vector in the direction of \vec{w}).

Assignment

- Do the odd-numbered problems 1-11 in Appendix J. 2 and check your answers in Appendix L (not to hand in).
- Be prepared for a quiz tomorrow (Thursday) on what we covered yesterday and today.

