Recap from yesterday

The dot product has two equivalent representations:

$$
\begin{aligned}
& \vec{v} \cdot \vec{w}=|\vec{v}||\vec{w}| \cos (\theta) \\
& \vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}
\end{aligned}
$$

where θ is the angle between the vectors, and $\vec{v}=\left\langle v_{1}, v_{2}\right\rangle$, and $\vec{w}=\left\langle w_{1}, w_{2}\right\rangle$.

The component of \vec{v} in the direction of \vec{w} is $|\vec{v}| \cos (\theta)$, or $\vec{v} \cdot \frac{\vec{w}}{|\vec{w}|}$.

Follow up on projection

The quantity $\vec{v} \cdot \frac{\vec{w}}{|\vec{w}|}$ is the scalar projection of the vector \vec{v} onto the vector \vec{w}. This quantity represents the component of \vec{w} in the direction of \vec{w}.

The vector projection of \vec{v} onto \vec{w} is the vector obtained by multiplying the scalar projection by a unit vector in the direction of \vec{w}, that is,

$$
\left(\vec{v} \cdot \frac{\vec{w}}{|\vec{w}|}\right) \frac{\vec{w}}{|\vec{w}|}
$$

Example
If $\vec{v}=\langle 1,2\rangle$ and $\vec{w}=\langle 3,4\rangle$, then the scalar projection of \vec{v} onto \vec{w} equals $11 / 5$
and the vector projection equals $\langle 33 / 25,44 / 25\rangle$.

Parametric equations

Example

The equations

$$
x=\cos (\theta), \quad y=\sin (\theta), \quad 0 \leq \theta \leq 2 \pi
$$

are parametric equations for a circle of radius 1 in the $x y$ plane [since $\left.(\cos \theta)^{2}+(\sin \theta)^{2}=1\right]$.

Using vectors, you could write $\vec{r}(\theta)=\langle\cos (\theta), \sin (\theta)\rangle$ or $\vec{r}(\theta)=\vec{\imath} \cos (\theta)+\vec{\jmath} \sin (\theta)$, where \vec{r} is the position vector that joins the origin to a point on the curve.

Equations of lines

slope-intercept form $y=m x+b$
point-slope form $y-y_{0}=m\left(x-x_{0}\right)$
vector form $\vec{r}(t)=\vec{r}_{0}+t \vec{v}$, where \vec{r}_{0} is the position vector of some point on the line, and t is the parameter, and \vec{v} is a vector parallel to the line.

Example

Find a vector equation for the line passing through the points $(1,2)$ and $(3,4)$.
Solution: Take \vec{r}_{0} to be $\langle 1,2\rangle$ and take \vec{v} to be $\langle 3-1,4-2\rangle$.
Then $\vec{r}(t)=\langle 1,2\rangle+t\langle 2,2\rangle$.

Assignment

- Do the odd-numbered problems 1-13 in Appendix J. 3 and check your answers in Appendix L (not to hand in).
(Alert! Some of these are hard!)

Quiz

1. Suppose \vec{v} is a vector. For each of the following quantities, say if it is a vector, a scalar, or a meaningless expression.
(a) $5 \vec{v}$
(b) $5+\vec{v}$
(c) $5+|\vec{v}|$
(d) $|5 \vec{v} \cdot \vec{v}|$
2. Suppose $\vec{v}+\vec{w}=\langle 3,-3\rangle$ and $\vec{v}-\vec{w}=\langle-1,3\rangle$.

Find $\vec{v}+2 \vec{w}$.
3. Suppose $\vec{v}=3 \vec{\imath}+4 \vec{\jmath}$, and $\vec{v} \cdot \vec{w}=0$, and $|\vec{w}|=1$. There are two solutions for \vec{w}. Find both of them.

