Recap from yesterday

The dot product has two equivalent representations:

$$\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos(\theta)$$
$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2$$

where θ is the angle between the vectors, and $\vec{v} = \langle v_1, v_2 \rangle$, and $\vec{w} = \langle w_1, w_2 \rangle$.

The component of \vec{v} in the direction of \vec{w} is $|\vec{v}| \cos(\theta)$, or $\vec{v} \cdot \frac{\vec{w}}{|\vec{w}|}$.

Follow up on projection

The quantity $\vec{v} \cdot \frac{\vec{w}}{|\vec{w}|}$ is the *scalar projection* of the vector \vec{v} onto the vector \vec{w} . This quantity represents the component of \vec{w} in the direction of \vec{w} .

The vector projection of \vec{v} onto \vec{w} is the vector obtained by multiplying the scalar projection by a unit vector in the direction of \vec{w} , that is,

$$\left(ec{v}\cdot rac{ec{w}}{ec{w}ec}
ight)rac{ec{w}}{ec{w}ec}$$

Example

If $\vec{v} = \langle 1, 2 \rangle$ and $\vec{w} = \langle 3, 4 \rangle$, then the scalar projection of \vec{v} onto \vec{w} equals 11/5 and the vector projection equals $\langle 33/25, 44/25 \rangle$.

Parametric equations

Example

The equations

$$x = \cos(\theta), \qquad y = \sin(\theta), \qquad 0 \le \theta \le 2\pi$$

are parametric equations for a circle of radius 1 in the xy plane [since $(\cos \theta)^2 + (\sin \theta)^2 = 1$].

Using vectors, you could write $\vec{r}(\theta) = \langle \cos(\theta), \sin(\theta) \rangle$ or $\vec{r}(\theta) = \vec{i} \cos(\theta) + \vec{j} \sin(\theta)$, where \vec{r} is the *position vector* that joins the origin to a point on the curve.

Equations of lines

slope-intercept form y = mx + bpoint-slope form $y - y_0 = m(x - x_0)$ vector form $\vec{r}(t) = \vec{r_0} + t\vec{v}$, where $\vec{r_0}$ is the position vector of some point on the line, and t is the parameter, and \vec{v} is a vector parallel to the line.

Example

Find a vector equation for the line passing through the points (1,2) and (3,4). Solution: Take $\vec{r_0}$ to be $\langle 1,2 \rangle$ and take \vec{v} to be $\langle 3-1,4-2 \rangle$. Then $\vec{r}(t) = \langle 1,2 \rangle + t \langle 2,2 \rangle$.

Assignment

Do the odd-numbered problems 1–13 in Appendix J.3 and check your answers in Appendix L (not to hand in).

(Alert! Some of these are hard!)

Quiz

- Suppose v is a vector. For each of the following quantities, say if it is a vector, a scalar, or a meaningless expression.
 (a) 5v (b) 5 + v (c) 5 + |v| (d) |5v · v|
- 2. Suppose $\vec{v} + \vec{w} = \langle 3, -3 \rangle$ and $\vec{v} \vec{w} = \langle -1, 3 \rangle$. Find $\vec{v} + 2\vec{w}$.
- 3. Suppose $\vec{v} = 3\vec{i} + 4\vec{j}$, and $\vec{v} \cdot \vec{w} = 0$, and $|\vec{w}| = 1$. There are two solutions for \vec{w} . Find both of them.