Comment on Problem 13

Solve
$$x = \frac{1-t}{1+t}$$
 by high-school algebra to get $t = \frac{1-x}{1+x}$, and $y = t^2$, so $y = \left(\frac{1-x}{1+x}\right)^2$.

Help

- ▶ I have office hours in Blocker 601L, Monday and Wednesday afternoons, 2:00–3:00.
- Our teaching assistant, Angelique, has office hours in Blocker 221B, after class on Tuesday and Thursday 1:00–2:00 and before class on Wednesday 3:00–4:00.
- The Department of Mathematics has evening drop-in help sessions for many courses. The help session for Math 151/171 meets in Blocker 117 on Monday, Tuesday, Wednesday, and Thursday evenings, 5:00–7:30.

Summary of the class discussion:

We looked in desmos at graphs of $\cos(x) + x \sin(1/x)$ and $\cos(1/x)$ and $x \ln(x) \sin(1/x)$ and $|x| + \cos(\pi/x)$ to see what can be said from a graph about limits when $x \to 0$.

The first example has limit 1; the second example has no limit; the third example has a limit from the right (symbolized by $\lim_{x\to 0^+}$); and the fourth example seemed, from a table of data, to have a limit, but the graph shows that actually there is no limit.

Limits: the easy case

When is lim f(x) = f(b)? If f(x) is a polynomial, like 7x⁵ - 3x³ + ²/₉x - √π. If f(x) is a rational function (a quotient of polynomials), like 5x³ - 2x + 1/(x² + 7), as long as the denominator is not equal to zero at b.

► If f(x) is an exponential function, a logarithm function, or a trigonometric function, as long as b is in the domain of the function.

Limits: examples with holes in the domain

•
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - x - 2}$$

Factor:
$$\frac{x^2 - 4}{x^2 - x - 2} = \frac{(x - 2)(x + 2)}{(x - 2)(x + 1)} = \frac{x + 2}{x + 1}$$
, so the limit as $x \to 2$ equals 4/3.
Notice that $\frac{x + 2}{x + 1} = 1 + \frac{1}{x + 1}$, so the graph looks like the graph of $1/x$ but shifted 1 unit to the left and 1 unit up.
The graph of the original function has a hole at the point

where x = 2 and y = 4/3.

Assignment (not to hand in)

- Do the odd-numbered problems 5–11 in section 2.2 and check your answers in the back of the book.
- Do problems 21, 23, and 25 in Appendix J.2 and check your answers in Appendix L.