Comment on Problem 13

Solve $x=\frac{1-t}{1+t}$ by high-school algebra to get $t=\frac{1-x}{1+x}$, and $y=t^{2}$, so

$$
y=\left(\frac{1-x}{1+x}\right)^{2}
$$

Help

- I have office hours in Blocker 601L, Monday and Wednesday afternoons, 2:00-3:00.
- Our teaching assistant, Angelique, has office hours in Blocker 221B, after class on Tuesday and Thursday 1:00-2:00 and before class on Wednesday 3:00-4:00.
- The Department of Mathematics has evening drop-in help sessions for many courses. The help session for Math 151/171 meets in Blocker 117 on Monday, Tuesday, Wednesday, and Thursday evenings, 5:00-7:30.

Limits: examples

Summary of the class discussion:
We looked in desmos at graphs of $\cos (x)+x \sin (1 / x)$ and $\cos (1 / x)$ and $x \ln (x) \sin (1 / x)$ and $|x|+\cos (\pi / x)$ to see what can be said from a graph about limits when $x \rightarrow 0$.

The first example has limit 1 ; the second example has no limit; the third example has a limit from the right (symbolized by $\lim _{x \rightarrow 0^{+}}$); and the fourth example seemed, from a table of data, to have a limit, but the graph shows that actually there is no limit.

Limits: the easy case

When is $\lim _{x \rightarrow b} f(x)=f(b)$?

- If $f(x)$ is a polynomial, like $7 x^{5}-3 x^{3}+\frac{2}{9} x-\sqrt{\pi}$.
- If $f(x)$ is a rational function (a quotient of polynomials), like $5 x^{3}-2 x+1$ $\frac{5 x^{3}-2 x+1}{x^{2}+7}$, as long as the denominator is not equal to zero at b.
- If $f(x)$ is an exponential function, a logarithm function, or a trigonometric function, as long as b is in the domain of the function.

Limits: examples with holes in the domain

- $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-x-2}$

Factor: $\frac{x^{2}-4}{x^{2}-x-2}=\frac{(x-2)(x+2)}{(x-2)(x+1)}=\frac{x+2}{x+1}$, so the limit as $x \rightarrow 2$ equals $4 / 3$.
Notice that $\frac{x+2}{x+1}=1+\frac{1}{x+1}$, so the graph looks like the graph of $1 / x$ but shifted 1 unit to the left and 1 unit up. The graph of the original function has a hole at the point where $x=2$ and $y=4 / 3$.

Assignment (not to hand in)

- Do the odd-numbered problems 5-11 in section 2.2 and check your answers in the back of the book.
- Do problems 21, 23, and 25 in Appendix J. 2 and check your answers in Appendix L.

