How do you spell the word "asymptote"?

New limits from old

Suppose
$$\lim_{x \to 2} f(x) = 3$$
 and $\lim_{x \to 2} g(x) = 2$.
• $\lim_{x \to 2} (f(x) + g(x)) = 3 + 2 = 5$.
• $\lim_{x \to 2} f(x)g(x) = 2 \times 3 = 6$.
• $\lim_{x \to 2} f(g(x)) = 3$.
• $f(g(x))$ can also be written as $(f \circ g)(x)$.

▶ $\lim_{x\to 2} (g \circ f)(x) =$ not enough information to answer this question

A subtlety

Is it always true that
$$\lim_{x\to 0} \left(f(x) + g(x)\right) = \lim_{x\to 0} f(x) + \lim_{x\to 0} g(x)$$
 ?

Examples

▶ If $f(x) = \frac{1}{x^2}$ and $g(x) = 1 - \frac{1}{x^2}$, then the left-hand side is 1, but the right-hand side is $\infty - \infty$.

► If
$$f(x) = \operatorname{sgn}(x) := \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

and $g(x) = -f(x)$, then the left-hand side is 0, but the right hand side is does not exist + does not exist.

The equality *is* true when the two limits on the right-hand side exist and are finite.

Squeeze theorem (or sandwich theorem)

Example

$$\begin{split} &\lim_{x\to 0} x\cos(1/x) = ?\\ &\text{Solution. Since } -|x| \leq x\cos(1/x) \leq |x|, \text{ and } \lim_{x\to 0} |x| = 0 \text{ and}\\ &\lim_{x\to 0} (-|x|) = 0, \text{ it must be that } \lim_{x\to 0} x\cos(1/x) = 0. \end{split}$$

Assignment (not to hand in)

Solve the following problems and check your answers in the book.

▶ In Section 2.2, problems 35, 37, 41.

In Section 2.3, problems 17, 19, 25, 37, 49, 51, 59, 65.