How do you spell the word "asymptote"?

New limits from old

Suppose $\lim _{x \rightarrow 2} f(x)=3$ and $\lim _{x \rightarrow 2} g(x)=2$.

- $\lim _{x \rightarrow 2}(f(x)+g(x))=3+2=5$.
- $\lim _{x \rightarrow 2} f(x) g(x)=2 \times 3=6$.
- $\lim _{x \rightarrow 2} f(g(x))=3$.
$f(g(x))$ can also be written as $(f \circ g)(x)$.
- $\lim _{x \rightarrow 2}(g \circ f)(x)=$ not enough information to answer this question

A subtlety

Is it always true that $\lim _{x \rightarrow 0}(f(x)+g(x))=\lim _{x \rightarrow 0} f(x)+\lim _{x \rightarrow 0} g(x) ?$

Examples

- If $f(x)=\frac{1}{x^{2}}$ and $g(x)=1-\frac{1}{x^{2}}$, then the left-hand side is 1 , but the right-hand side is $\infty-\infty$.
- If $f(x)=\operatorname{sgn}(x):=\left\{\begin{aligned} 1, & \text { if } x>0 \\ 0, & \text { if } x=0 \\ -1, & \text { if } x<0\end{aligned}\right.$
and $g(x)=-f(x)$, then the left-hand side is 0 , but the right hand side is does not exist + does not exist.

The equality is true when the two limits on the right-hand side exist and are finite.

Squeeze theorem (or sandwich theorem)

Example
$\lim _{x \rightarrow 0} x \cos (1 / x)=$?
Solution. Since $-|x| \leq x \cos (1 / x) \leq|x|$, and $\lim _{x \rightarrow 0}|x|=0$ and $\lim _{x \rightarrow 0}(-|x|)=0$, it must be that $\lim _{x \rightarrow 0} x \cos (1 / x)=0$.

Assignment (not to hand in)

Solve the following problems and check your answers in the book.

- In Section 2.2, problems 35, 37, 41.
- In Section 2.3, problems 17, 19, 25, 37, 49, 51, 59, 65.

