Limits: how close is close enough?

Example
If $f(x)=2|x|$, then $\lim _{x \rightarrow 0} f(x)=0$.
A quantitative version of this limit is the question: How close must x be to 0 to ensure that $f(x)$ is less than $\frac{1}{10}$?

More generally, how close must x be to 0 to ensure that $f(x)$ is less than a prescribed error tolerance ε ?
Answer: $-\varepsilon / 2<x<\varepsilon / 2$

The precise definition of limit

The meaning of " $\lim _{x \rightarrow b^{+}} f(x)=L^{\prime}$ " is that for every positive error tolerance ε, there is a corresponding positive number δ having the following property:

$$
L-\varepsilon<f(x)<L+\varepsilon \quad \text { whenever } \quad b<x<b+\delta
$$

For the left-hand limit $\lim _{x \rightarrow b^{-}} f(x)$, the corresponding property is:

$$
L-\varepsilon<f(x)<L+\varepsilon \quad \text { whenever } \quad b-\delta<x<b
$$

For a two-sided limit $\lim _{x \rightarrow b} f(x)$, you can rewrite the inequalities using absolute value:

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-b|<\delta
$$

Assignment (not to hand in)

- In Section 2.4, Exercises 1, 3, 13, 15, 41.

