Limits: how close is close enough?

Example If f(x) = 2|x|, then $\lim_{x\to 0} f(x) = 0$.

A quantitative version of this limit is the question: How close must x be to 0 to ensure that f(x) is less than $\frac{1}{10}$?

More generally, how close must x be to 0 to ensure that f(x) is less than a prescribed error tolerance ε ?

Answer: $-\varepsilon/2 < x < \varepsilon/2$

The precise definition of limit

The meaning of " $\lim_{x\to b^+} f(x) = L$ " is that for every positive error tolerance ε , there is a corresponding positive number δ having the following property:

 $L - \varepsilon < f(x) < L + \varepsilon$ whenever $b < x < b + \delta$.

For the left-hand limit $\lim_{x\to b^-} f(x)$, the corresponding property is:

 $L - \varepsilon < f(x) < L + \varepsilon$ whenever $b - \delta < x < b$.

For a two-sided limit $\lim_{x\to b} f(x)$, you can rewrite the inequalities using absolute value:

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - b| < \delta$.

Assignment (not to hand in)

▶ In Section 2.4, Exercises 1, 3, 13, 15, 41.