Announcement

Math Club Meeting
 February 5 (today) 7:00pm

Blocker 220
Prof. Jay Walton will speak about mathematical ecology.
Also on the agenda: pizza.

Tangent lines

Two points are needed to determine a line, but a tangent line might touch a graph at only one point.

Strategy: Find the slope of a secant line through two points near each other on the graph; take a limit as the points come together.

Example
When $f(x)=x^{2}+1$, find the slope of the line tangent to the graph at the point $(2, f(2))=(2,5)$.

Solution: Compute $\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{\left(x^{2}+1\right)-\left(2^{2}+1\right)}{x-2}=$ $\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2}(x+2)=4$.
The equation of the tangent line is $y-5=4(x-2)$, or $y=4 x-3$.

Notation and terminology

The limit $\lim _{x \rightarrow b} \frac{f(x)-f(b)}{x-b}$ or, equivalently, $\lim _{h \rightarrow 0} \frac{f(b+h)-f(b)}{h}$ is denoted by the symbol $f^{\prime}(b)$, called the derivative of f at b.

The meaning of $f^{\prime}(b)$ is the slope of the line tangent to the graph of f at the point $(b, f(b)$), equivalently, the instantaneous rate of change of f at b.

Assignment (not to hand in)

- In Section 2.6, Exercises 3, 7, 19, 27, 35, 39, 49, 67.

