About Exam 1

- Exam 1 takes place in class this week on Thursday, February 14.
- Material covered on the exam: Chapter 2 (limits and derivatives) and Appendix J (vectors and vector functions).
- All of the exam problems are work-out problems.
- Please bring your own paper to the exam.

Recap on limit definitions of the derivative

A convenient formula for the derivative at a specific value b is $f^{\prime}(b)=\lim _{x \rightarrow b} \frac{f(x)-f(b)}{x-b}$.

A convenient formula for the derivative at a general value x is $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

Various notations for the derivative:
$f^{\prime}(x)$ and $\frac{d f}{d x}$ and $\frac{d}{d x} f(x)$ and $D f(x)$ all mean the same thing.

Example: an exponential function

If $f(x)=2^{x}$, what is $f^{\prime}(x)$?

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{2^{x+h}-2^{x}}{h} & =\lim _{h \rightarrow 0} \frac{2^{x} 2^{h}-2^{x}}{h}=\lim _{h \rightarrow 0} 2^{x}\left(\frac{2^{h}-1}{h}\right) \\
& =2^{x} \text { times a constant. }
\end{aligned}
$$

The slope of the graph of this function is proportional to the height of the graph!

A similar calculation applies to 3^{x} or 4^{x} or any b^{x} : the derivative is a constant times the function.

"The" exponential function

There is a base b for which the derivative of the function b^{x} is equal to itself.

That special base is e, named by the Swiss mathematician Leonhard Euler (1707-1783).

$$
\frac{d}{d x} e^{x}=e^{x}
$$

Derivative of the sine function at 0

When θ is measured in radians, the length of the red arc equals θ. The picture makes it plausible that $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$.
Interpretation as a derivative: $\sin ^{\prime}(0)=1$.

A key formula: $\frac{d}{d x} \sin (x)=\cos (x)$

The computation:

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x) \cos (h)+\cos (x) \sin (h)-\sin (x)}{h}
\end{aligned}
$$

(by a trigonometric identity)
$=\lim _{h \rightarrow 0} \sin (x) \frac{\cos (h)-1}{h}+\lim _{h \rightarrow 0} \cos (x) \frac{\sin (h)}{h}$
$=\sin (x) \cos ^{\prime}(0)+\cos (x) \sin ^{\prime}(0)$
$=\cos (x)$.

Assignment: Study for the exam

Some suggestions:

- Work on the Review at the end of Appendix J and at the end of Chapter 2.
- Work on the old exam.
- Study in groups.
- Go to help session.

