Review: Vectors

- length
- dot product
- projection
- unit vector
- parametric equations

Squeeze theorem: A tricky example

$\lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{3}+(\ln x)^{2}}}{x^{2}+(\cos x)^{2}}=?$
Since $x \rightarrow \infty$, we can assume $x>1$. Then $(\ln x)^{2}<x^{2}<x^{3}$ so

$$
0 \leq \frac{\sqrt{3 x^{3}+(\ln x)^{2}}}{x^{2}+(\cos x)^{2}} \leq \frac{\sqrt{3 x^{3}+x^{3}}}{x^{2}+(\cos x)^{2}} \leq \frac{2 x^{3 / 2}}{x^{2}+0}=\frac{2}{x^{1 / 2}} \xrightarrow{x \rightarrow \infty} 0
$$

The original fraction is trapped between 0 and an expression that has limit 0 , so the squeeze theorem implies that the original limit equals 0 .

The precise definition of limit: Example

Problem
Prove using the definition of limit that $\lim _{x \rightarrow 1} \sqrt{x+3}=2$.
The definition
For every positive number ε, there exists a positive number δ such that $|\sqrt{x+3}-2|<\varepsilon$ whenever $|x-1|<\delta$.
Solution
Multiply and divide by $\sqrt{x+3}+2$ to see that

$$
|\sqrt{x+3}-2|=\left|\frac{(x+3)-2^{2}}{\sqrt{x+3}+2}\right| \leq \frac{|x-1|}{0+2}
$$

This expression is less than ε when $|x-1|<2 \varepsilon$. So if $\delta=2 \varepsilon$, then the inequality $|x-1|<\delta$ guarantees that $|\sqrt{x+3}-2|<\varepsilon$.

