Exam Results

- Scoring algorithm: $30+$ (10 points per problem).
- Class statistics: mean 82, median 83, maximum 98. Good job!
- Solutions are posted.

Exam follow-up

- What is the difference between "zero slope" and "no slope" ? No slope corresponds to a vertical line; zero slope corresponds to a horizontal line.
- Absolute value can be interpreted geometrically as distance: $|x-2|$ means the distance on the number line between x and 2 . So $|x-2|$ and $|2-x|$ mean the same thing.

For a vector, $|\vec{v}|$ is the distance between the tail of the vector and the head of the vector, hence $\sqrt{v_{1}^{2}+v_{2}^{2}}$.

Some consequences of $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$-\frac{d}{d x} e^{x}=e^{x}$

- $\frac{d}{d x} \sin (x)=\cos (x)$
- $\frac{d}{d x} \cos (x)=-\sin (x)$
- $\frac{d}{d x} x^{n}=n x^{n-1}$

Derivatives and algebra

Limits preserve sums, so derivatives do too:

$$
\begin{aligned}
\frac{d}{d x}\left(2 e^{x}+3 \sin (x)\right) & =\frac{d}{d x}\left(2 e^{x}\right)+\frac{d}{d x}(3 \sin (x)) \\
& =2 e^{x}+3 \cos (x)
\end{aligned}
$$

But products are a different story:

$$
\frac{e^{x+h} \sin (x+h)-e^{x} \sin (x)}{h} \neq\left(\frac{e^{x+h}-e^{x}}{h}\right)\left(\frac{\sin (x+h)-\sin (x)}{h}\right) .
$$

The derivative of a product is not equal to the product of the derivatives!

The product rule for derivatives

$$
(f g)^{\prime}=f g^{\prime}+f^{\prime} g \quad \text { (if } f \text { and } g \text { are differentiable) }
$$

Example

$$
\frac{d}{d x}\left(e^{x} \sin (x)\right)=e^{x} \frac{d}{d x} \sin (x)+\left(\frac{d}{d x} e^{x}\right) \sin (x)=e^{x} \cos (x)+e^{x} \sin (x)
$$

The quotient rule for derivatives

\triangle The derivative of a quotient is not equal to the quotient of the derivatives.
$\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$
Example
$\frac{d}{d x}\left(\frac{\sin (x)}{\cos (x)}\right)=\frac{\cos (x) \cos (x)-\sin (x)(-\sin (x))}{(\cos (x))^{2}}=\frac{1}{(\cos (x))^{2}}$
Thus $\frac{d}{d x} \tan (x)=(\sec (x))^{2}=1+(\tan (x))^{2}$.

The chain rule

How do the graphs of $\sin (x)$ and $\sin (2 x)$ compare?
The graph of $\sin (2 x)$ is compressed by a factor of 2 , so the graph changes twice as fast.

Consequently, $\frac{d}{d x} \sin (2 x)=2 \cos (2 x)$
Similarly, the derivative of $\sin (g(x))$ equals $\cos (g(x))$ times $g^{\prime}(x)$.

Assignment

- Section 3.1, Exercises 3, 7, 15, 33, 37, 55.
- Section 3.2, Exercises 3, 7, 23, 29, 43, 49, 55.
- Section 3.3, Exercises 3, 7, 9, 11, 13, 17, 23.

