Follow-up from yesterday

1. Suppose the curve $y=x^{4}+a x^{3}+b x^{2}+c x+d$ has a tangent line when $x=0$ with equation $y=2 x+1$, and a tangent line when $x=1$ with equation $y=2-3 x$. Find the values of a, b, c, and d.
[\#76 in 3.1. Answer: $a=1, b=-6, c=2, d=1$.]
Strategy: There are four pieces of information to use to find the four unknowns in $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d$.
(i) $d=f(0)=1$ (the height of the tangent line when $x=0$).
(ii) $c=f^{\prime}(0)=2$ (the slope of the tangent line when $x=0$).
(iii) $1+a+b+c+d=f(1)=-1$ (the height of the tangent line when $x=1$).
(iv) $4+3 a+2 b+c=f^{\prime}(1)=-3$ (the slope of the tangent line when $x=1$).

Continuation

2. If $f(2)=10$ and $f^{\prime}(x)=x^{2} f(x)$ for all x, find $f^{\prime \prime}(2)$. [\#48 in 3.2. Answer: 200.]

Strategy: Apply the product rule to differentiate $x^{2} f(x)$. $f^{\prime \prime}(x)=2 x f(x)+x^{2} f^{\prime}(x)$.

Now plug in $x=2$.

Continuation

$$
\text { 3. } \lim _{x \rightarrow 0} \frac{\sin (3 x) \sin (5 x)}{x^{2}}=? \quad[\# 44 \text { in 3.3. Answer: 15.] }
$$

Strategy: Start with a simpler problem.
$\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{\sin (x)-\sin (0)}{x-0}=\sin ^{\prime}(0)=\cos (0)=1$.
Method 1. Similarly, $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}$ equals the derivative of $\sin (3 x)$ at $x=0$, or $3 \cos (0)$ by the chain rule.
Method 2. Rewrite $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}=\lim _{x \rightarrow 0} 3 \frac{\sin (3 x)}{3 x} \stackrel{k=3 x}{=} \lim _{k \rightarrow 0} 3 \frac{\sin (k)}{k}$.
Either method shows $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}=3$. Similarly $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}=5$.

The chain rule

The derivative of $\sin (3 x)$ equals $3 \cos (3 x)$.
The derivative of $\sin (5 x)$ equals $5 \cos (5 x)$.
What about the derivative of $\sin \left(x^{2}\right)$?
This problem is different because the slope of the graph of x^{2} is not constant.
But the same principle applies to show that the derivative equals $\cos \left(x^{2}\right)$ times the slope (or derivative) of x^{2}.
Thus $\frac{d}{d x} \sin \left(x^{2}\right)=\cos \left(x^{2}\right) \cdot 2 x$

More elaborate chain rule

In general, $\frac{d}{d x} \sin \square=\cos \square \cdot \frac{d}{d x} \square$
Examples

- $\frac{d}{d x} \sin \left(x^{2}+e^{x}\right)=\cos \left(x^{2}+e^{x}\right) \cdot\left(2 x+e^{x}\right)$
$-\frac{d}{d x} \sin \left(e^{x^{2}}\right)=\cos \left(e^{x^{2}}\right) \cdot e^{x^{2}} \cdot 2 x$

Implicit differentiation

Example

Find an equation of the line tangent to the graph of $y^{3}-2 x y+x^{2}=5$ at the point $(1,2)$.

Solution
Although you lack an explicit formula $y=f(x)$, you can still view the equation as $f(x)^{3}-2 x f(x)+x^{2}=5$.

Differentiate using the chain rule and the product rule to get $3 f(x)^{2} f^{\prime}(x)-2 f(x)-2 x f^{\prime}(x)+2 x=0$.

Now plug in $x=1$ and $f(x)=y=2$ to get $12 f^{\prime}(1)-4-2 f^{\prime}(1)+2=0$, so the slope $f^{\prime}(1)$ equals $\frac{1}{5}$.
Therefore an equation of the tangent line is $y-2=\frac{1}{5}(x-1)$.

Assignment (not to hand in)

- Section 3.4, Exercises 5, 11, 13, 21, 23, 31, 53, 63.
- Section 3.5, Exercises 3, 7, 11, 15, 27.

