Application of implicit differentiation to inverse functions

Example
If $f(x)=\ln (x)$ (the "natural" logarithm), what is $f^{\prime}(x)$?
Solution
The natural logarithm is the inverse of the exponential function:
$e^{\ln (x)}=x$ and $\ln \left(e^{x}\right)=x$
So $e^{f(x)}=x$. Differentiate using the chain rule:
$e^{f(x)} f^{\prime}(x)=1$
Therefore $f^{\prime}(x)=\frac{1}{e^{f(x)}}=\frac{1}{x}$

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}
$$

Tangents to parametric curves

Example

Suppose a curve is described in parametric form:

$$
\begin{aligned}
x(t) & =2 t-\ln \left(1+t^{2}\right), \\
y(t) & =e^{t} \sin (t), \\
\text { or } \quad \vec{r}(t) & =\left(2 t-\ln \left(1+t^{2}\right)\right.
\end{aligned}
$$

Find a unit vector tangent to the curve at the point where $t=0$.
Solution
$\vec{r}^{\prime}(0)$ is a tangent vector. Compute the derivative to see that $\vec{r}^{\prime}(0)=2 \vec{\imath}+\vec{\jmath}$. A corresponding unit vector is $\frac{2}{\sqrt{5}} \vec{l}+\frac{1}{\sqrt{5}} \vec{j}$.
The slope of the tangent line is $1 / 2$.

Assignment (not to hand in)

- Appendix K.1, Exercises 11, 13, 15, 17, 21, 23.
- Appendix K.2, Exercises 3, 5, 7, 9, 13, 17, 21.

