Announcement

2019 Sue Geller Undergraduate Lecture Tuesday, March 19, 6:00-7:00pm in Blocker 117
Laura DeMarco of Northwestern University will speak on "The Mandelbrot set: What we know today"

Exercises from yesterday

1. If the position vector $\vec{r}(t)$ of a moving particle equals $\langle 4 \cos (t), 3 \sin (t)\rangle$, find the velocity when $t=\pi / 3$. [Exercise 16 in Appendix K.1. Answer: $\langle-2 \sqrt{3}, 3 / 2\rangle$.]
2. If $x^{2}+x y+y^{2}=3$, find the value of the second derivative $y^{\prime \prime}$ at the point on the graph where $x=1$ and $y=1$. [Exercise 36 in Section 3.5. Answer: -2/3.]
3. If $f(1)=2, f(2)=3, f^{\prime}(1)=4, f^{\prime}(2)=5, f^{\prime}(3)=6$, and $F(x)=f(x f(x f(x)))$, find $F^{\prime}(1)$.
[Exercise 74 in Section 3.4. Answer: 198.]

Notation for higher derivatives

$y=f(x)$
First derivative is y^{\prime} or $f^{\prime}(x)$ or $\frac{d y}{d x}$.
Second derivative is $y^{\prime \prime}$ or $f^{\prime \prime}(x)$ or $\frac{d^{2} y}{d x^{2}}$ or $\left(\frac{d y}{d x}\right)^{\prime}$
Third derivative $y^{\prime \prime \prime}$ or $y^{(3)}$ or $\frac{d^{3} y}{d x^{3}}$

Words from physics

$\vec{r}(t)$ is the position vector.
\vec{r}^{\prime} is velocity (a vector), and $\left|\vec{r}^{\prime}\right|$ is speed (a scalar).
$\vec{r}^{\prime \prime}$ is acceleration
$\vec{r}^{\prime \prime \prime}$ is jerk

