Announcement

2019 Sue Geller Undergraduate Lecture Tuesday, March 19, 6:00–7:00pm in Blocker 117 Laura DeMarco of Northwestern University will speak on "The Mandelbrot set: What we know today"

Exercises from yesterday

- 1. If the position vector $\vec{r}(t)$ of a moving particle equals $\langle 4\cos(t), 3\sin(t) \rangle$, find the velocity when $t = \pi/3$. [Exercise 16 in Appendix K.1. Answer: $\langle -2\sqrt{3}, 3/2 \rangle$.]
- 2. If $x^2 + xy + y^2 = 3$, find the value of the second derivative y'' at the point on the graph where x = 1 and y = 1. [Exercise 36 in Section 3.5. Answer: -2/3.]
- 3. If f(1) = 2, f(2) = 3, f'(1) = 4, f'(2) = 5, f'(3) = 6, and F(x) = f(xf(xf(x))), find F'(1). [Exercise 74 in Section 3.4. Answer: 198.]

Notation for higher derivatives

$$y = f(x)$$

First derivative is y' or f'(x) or $\frac{dy}{dx}$.

Second derivative is
$$y''$$
 or $f''(x)$ or $\frac{d^2y}{dx^2}$ or $\left(\frac{dy}{dx}\right)'$

Third derivative
$$y'''$$
 or $y^{(3)}$ or $\frac{d^3y}{dx^3}$

 $\vec{r}(t)$ is the position vector.

 \vec{r}' is velocity (a vector), and $|\vec{r}'|$ is speed (a scalar).

 \vec{r}'' is acceleration

 \vec{r}''' is jerk