Some terminology and notation: differentials

The symbol Δ (Greek letter Delta) denotes change:
Δx is a change in x, and Δy is a change in y.
The ratio $\frac{\Delta y}{\Delta x}$ is an average rate of change.
$\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$ is an instantaneous rate of change.
For the input variable, Δx and $d x$ mean the same thing.
For the output variable, Δy means the exact change, but $d y$ means the approximate change given by the tangent-line approximation: $d y=f^{\prime}(x) d x$.

Example

Exercise 16 in Section 3.10
(a) Find the differential $d y$ when $y=\cos (\pi x)$.

$$
d y=-\pi \sin (\pi x) d x
$$

(b) Evaluate $d y$ when $x=\frac{1}{3}$ and $d x=-0.02$.

Quadratic approximation

The linear approximation corresponds to a line tangent to a curve.
The quadratic approximation corresponds to a parabola that has the same slope as the curve and the same second derivative.
$f(x) \approx f(b)+f^{\prime}(b)(x-b)+\frac{1}{2} f^{\prime \prime}(b)(x-b)^{2}$
Example
Suppose $f(x)=e^{x}$ and $b=0$. The quadratic approximation says $e^{x} \approx 1+x+\frac{1}{2} x^{2}$ when x is close to 0 .
For instance, $e^{0.1} \approx 1+0.1+\frac{1}{2}(0.1)^{2}=1.105$

Assignment

Travel safely over Spring Break.

