Exercises from yesterday

1. If $f(x)=x-2 \cos (x)$, find the maximum value and the minimum value of the function on the interval where $-2 \leq x \leq 0$.
[4.1 \#68. Max when $x=-2$; min when $x=-\pi / 6$.]
2. If $x^{2}+x y+y^{3}=1$, find the value of the third derivative $y^{\prime \prime \prime}$ at the point where $x=1$.
[3.5 \#40. Answer 42.]
3. Find an equation of the line tangent to the curve given by parametric equations $x=3 t^{2}+1$ and $y=2 t^{3}+1$ at the point on the curve where $x=4$ and $y=3$.
[Appendix K. 2 \#22. Slope equals 1.]

What f^{\prime} and $f^{\prime \prime}$ say about the graph of f

- If f^{\prime} is positive on an interval, then the graph of f is increasing.
- If f^{\prime} is negative on an interval, then the graph of f is decreasing.
- If $f^{\prime \prime}$ is positive on an interval, then the graph lies above the tangent line: the graph is convex or concave up.
- If $f^{\prime \prime}$ is negative on an interval, then the graph lies below the tangent line: the graph is concave or concave down.

An inflection point is a point on the graph where the direction of concavity changes.

Assignment (not to hand in)

- Section 4.3, Exercises 5, 7, 11, 19, 21, 25, 29, 39, 43, 45, 51, 69, 73, 89.

