Reminder

- The Math Department drop-in Help Session for Math 151/171 takes place in Blocker 117 on Tuesday, Wednesday, and Thursday evenings, 5:00-7:30; and in Blocker 150 on Monday evenings, 7:30-10:00.
- I have office hours 2:00-3:00 on Monday and Wednesday afternoons in Blocker 601L. I am available also by appointment.
- Our teaching assistant, Angelique, has office hours in Blocker 221B on Tuesday and Thursday afternoons 1:00-2:00 and on Wednesday afternoons 3:00-4:00.

About the exam

- The second exam takes place in class Thursday (March 28).
- Please bring your own paper to the exam.
- Main topics:
- chain rule, product rule, quotient rule
- implicit differentiation
- tangents to parametric curves
- related rates
- linear approximation
- extreme values
- derivatives and the shape of graphs
- theorems: existence of extrema; Fermat's theorem; Rolle's theorem; the mean-value theorem

Testing critical numbers

If $f^{\prime}(c)=0$, how can you tell if there is a maximum at c or a minimum at c ?
Second-derivative test If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.
If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$, then try something else.
First-derivative test
If $f^{\prime}(c)=0$ and the sign of f^{\prime} changes from negative to positive, then f has a local minimum at c.
If $f^{\prime}(c)=0$ and the sign of f^{\prime} changes from positive to negative, then f has a local maximum at c.
If $f^{\prime}(c)=0$ but the sign of f^{\prime} does not change, then f has a "saddle point" (neither a local max nor a local min).

What goes up must come down

Theorem (Rolle's theorem)
If f is differentiable on an interval, and $f(a)=f(b)$, then there is some number c between a and b for which $f^{\prime}(c)=0$.

Tipsy Rolle's theorem

Theorem (Mean-value theorem)
If f is differentiable on an interval, then the average rate of change $\frac{f(b)-f(a)}{b-a}$ equals the instantaneous rate change $f^{\prime}(c)$ at some number c between a and b.

Example application of the mean-value theorem

Problem
Prove that $|\sin (x)-\sin (y)| \leq|x-y|$ for all real numbers x and y.
Solution
By the mean-value theorem, there exists a number c for which $\sin (x)-\sin (y)=\cos (c)(x-y)$. Then

$$
|\sin (x)-\sin (y)|=|\cos (c)||x-y| \leq|x-y| .
$$

