Exam Results

- Scoring algorithm: $30+$ (10 points per problem).
- Class statistics: mean 76, median 78, maximum 94. Good job!
- Solutions are posted.

Announcement

Math Club meeting tonight

Tuesday, April 2

7:00 pm in Blocker 220

Dr. Dean Baskin will talk about the quaternions.

I'Hôpital's rule or l'Hospital's rule (due to Johann Bernoulli)

Example
$\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\sin (3 x)}=$?
The numerator and the denominator both become 0 , but there is no obvious way to factor and cancel. What to do?

Solution
Replace each function with its linear approximation at 0 :
$e^{2 x}-1 \approx 0+2 x$, and $\sin (3 x) \approx 0+3 x$, so

$$
\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\sin (3 x)}=\lim _{x \rightarrow 0} \frac{2 x}{3 x}=\frac{2}{3}
$$

In other words, $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}$ assuming that $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$

Assignment (not to hand in)

- Section 4.4: Exercises 9, 11, 13, 15, 17, 19, 23, 27, 35, 47, 53

