Announcement

Freshman Sophomore Math Contest
 7:00-9:00 pm, Tuesday, April 9

Blocker 220

Antiderivatives

If $F^{\prime}=f$, then f is the derivative of F, and F is an antiderivative of f.

Example

If $f(x)=\sin (x)+x \cos (x)$, then an antiderivative of $f(x)$ is $x \sin (x)$ because $\frac{d}{d x} x \sin (x)=\sin (x)+x \cos (x)$ by the product rule.

Another antiderivative of $f(x)$ is $171+x \sin (x)$.

In general, if $F(x)$ is one antiderivative of $f(x)$, then $F(x)$ + constant is another antiderivative.

So an antiderivative is usually written as $F(x)+C$.

Notation

An antiderivative is also called an indefinite integral [coming up in Section 5.4].

The standard notation is $\int f(x) d x=F(x)+C$.
Example
$\int 7 x^{6} d x=x^{7}+C$.

Power rule

For derivatives: $\frac{d}{d x} x^{n}=n x^{n-1}$
For antiderivatives: $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$ as long as $n+1 \neq 0$.
Special case: $\int x^{-1} d x=\int \frac{1}{x} d x=\ln (x)+C$ when $x>0$.
Even more special case: $\int x^{-1} d x=\ln |x|+C$ when $x<0$.

Max-min word problems

Strategy:

- Name the variables.
- Identify the function to be extremized.
- Use any constraint equations to write the function in terms of just one variable.
- Find critical numbers and check the endpoints.

Quiz

1. Find $f(x)$ if $f^{\prime \prime}(x)=8 x^{3}+5, f(1)=0$, and $f^{\prime}(1)=8$. [Section 4.9 \#40]
2. Find the point on the curve $y=\sqrt{x}$ that is closest to the point $(3,0)$.
[Section 4.7 \#22]

Assignment (not to hand in)

- Section 4.7 [optimization word problems]: Exercises 3, 5, 7, 13, $15,19,21,23,25,27,29,31,33,35,37,39,41,43,65,73$
- Section 4.9 [antiderivatives]: Exercises 1, 5, 7, 9, 13, 15, 17, 21, 25, 35, 41, 47, 51, 61, 75

