Reminders

- Our last class meeting is Thursday, April 25 (because Tuesday, April 30 is redefined as Friday).
- The comprehensive final exam takes place 3:00-5:00 in the afternoon of Thursday, May 2.

Recap from last week

If the limit of Riemann sums $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ exists as $n \rightarrow \infty$, then the limit represents the (signed) area between the graph and the horizontal axis, written $\int_{a}^{b} f(x) d x$ and called the definite integral.

Some special cases

$\int_{5}^{5} e^{x^{3}} \arctan \left(x^{2}\right) d x=0$ (there is no interval, so zero area).
$\int_{3}^{-2} \sin (x) d x=-\int_{-2}^{3} \sin (x) d x$
(by convention when the "limits of integration" are reversed).
$\int_{-5}^{5} x^{2} d x=2 \int_{0}^{5} x^{2} d x$
by symmetry, since the integrand is an even function.
$\int_{-5}^{5} x^{3} d x=0$
since the integrand is an odd function.

A remark on notation

The letter x in $\int_{a}^{b} f(x) d x$ could be replaced by any other letter: $\int_{a}^{b} f(t) d t$ means the same thing.

And so do $\int_{a}^{b} f(\xi) d \xi$ and $\int_{a}^{b} f(\wp) d \wp$ and $\int_{a}^{b} f(\aleph) d \aleph$.
The integration variable is a placeholder, a so-called "dummy variable."

The fundamental theorem of calculus

What is the derivative of the area function?

$A(x+h)-A(x)$ is approximately the area of a rectangle of width h and height equal to the height of the graph at x, so
$A^{\prime}(x)=\lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}=$ the height of the graph at x (assuming that the graph represents a continuous function).

The fundamental theorem, in symbols

$$
\begin{aligned}
& \frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \\
& \text { Example } \\
& \frac{d}{d x} \int_{1}^{x} \sin \left(t^{3}\right) d t=\sin \left(x^{3}\right) \\
& \frac{d}{d x} \int_{0}^{x^{2}} e^{t} d t=2 x e^{x^{2}} \text { by the chain rule } \\
& \frac{d}{d x} \int_{x}^{5} \cos (t) d t=\frac{d}{d x}\left(\int_{-100}^{5} \cos (t) d t-\int_{-100}^{x} \cos (t) d t\right)=-\cos (x)
\end{aligned}
$$

Second part of the fundamental theorem

Since the derivative of $\int_{a}^{x} f(t) d t$ equals $f(x)$, the expression $\int_{a}^{x} f(t) d t$ is an antiderivative of $f(x)$.

So $\int_{a}^{x} f(t) d t=F(x)+C$, and we can determine the value of the constant C by setting x equal to a.
Indeed, $\int_{a}^{a}=0=F(a)+C$, so $C=-F(a)$.
Thus $\int_{a}^{x^{x}} f(t) d t=F(x)-F(a)$.

Example

Find the area under one arch of the sine graph.

Solution: An antiderivative of $\sin (x)$ is $-\cos (x)$, so the area equals $\int_{0}^{\pi} \sin (t) d t=-\cos (\pi)-(-\cos (0))=2$

Exercises for this week (not to hand in)

- Section 5.4: Exercises 7, 9, 11, 21, 23, 25, 27, 29, 33, 45, 49.
- Section 5.5: Exercises 1, 3, 5, 7, 11, 13, 17, 21, 25, 27, 33, 53, 59, 67, 69.

