Reminders

- Our last class meeting is Thursday, April 25 (because Tuesday, April 30 is redefined as Friday).
- The comprehensive final exam takes place 3:00-5:00 in the afternoon of Thursday, May 2.

Antiderivatives: the guess-and-check method

Example

Find an antiderivative of $\sqrt{2 x+3}$.
The power rule suggests that the answer might be $k(2 x+3)^{3 / 2}$ for some constant k. So differentiate this candidate antiderivative to see if you can choose a workable value for k :

$$
\frac{d}{d x} k(2 x+3)^{3 / 2}=k \cdot \frac{3}{2}(2 x+3)^{1 / 2} \cdot \frac{d}{d x}(2 x+3)=3 k(2 x+3)^{1 / 2}
$$

so it checks if $k=1 / 3$.
So the answer to the original problem is $\frac{1}{3}(2 x+3)^{3 / 2}+C$.

Antiderivatives: the substitution method

Example

Compute the antiderivative $\int x \sqrt{1+x^{2}} d x$.
Solution: Introduce a new variable u as follows.

$$
\begin{aligned}
u & =1+x^{2}, & \frac{d u}{d x}=2 x \\
d u & =2 x d x, & \frac{1}{2} d u=x d x
\end{aligned}
$$

The problem becomes $\int \sqrt{u} \frac{1}{2} d u$ or $\frac{1}{2} \int u^{1 / 2} d u$. By the power rule, the answer is $\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}+C$ or $\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}+C$.

Exercises for this week (not to hand in)

- Section 5.4: Exercises 7, 9, 11, 21, 23, 25, 27, 29, 33, 45, 49.
- Section 5.5: Exercises 1, 3, 5, 7, 11, 13, 17, 21, 25, 27, 33, 53, 59, 67, 69.

