Quiz solutions

January 24, 2019

1. Determine the vector projection of the vector $3\vec{i} + \vec{j}$ onto the vector $\vec{i} + 2\vec{j}$.

Solution. Since $|\vec{i} + 2\vec{j}| = \sqrt{1^2 + 2^2} = \sqrt{5}$, a unit vector in the direction of $\vec{i} + 2\vec{j}$ is $\frac{\vec{i}}{\sqrt{5}} + \frac{2\vec{j}}{\sqrt{5}}$. The *scalar* projection of the vector $3\vec{i} + \vec{j}$ onto the vector $\vec{i} + 2\vec{j}$ is therefore equal to the dot product

$$(3\vec{\imath}+\vec{j})\cdot\left(\frac{\vec{\imath}}{\sqrt{5}}+\frac{2\vec{j}}{\sqrt{5}}\right)$$
, or $\frac{3}{\sqrt{5}}+\frac{2}{\sqrt{5}}$, or $\frac{5}{\sqrt{5}}$, or $\sqrt{5}$.

The *vector* projection is this scalar multiplied times the already determined unit vector:

$$\sqrt{5}\left(\frac{\vec{\imath}}{\sqrt{5}} + \frac{2\vec{\jmath}}{\sqrt{5}}\right)$$
, or $\vec{\imath} + 2\vec{\jmath}$.

Remark. A surprise is that the answer turns out to be equal to one of the original vectors. The explanation is seen in the diagram: a perpendicular dropped from the head of the vector $\langle 3, 1 \rangle$ to the line with slope 2 hits that line precisely at the head of the vector $\langle 1, 2 \rangle$.

2. Compute the value of $\lim_{x \to -3} \frac{x^2 + 3x}{x^2 - x - 12}$.

Solution. Factor and cancel. If $x \neq -3$, then

$$\frac{x^2 + 3x}{x^2 - x - 12} = \frac{x(x+3)}{(x-4)(x+3)} = \frac{x}{x-4}$$

Therefore

$$\lim_{x \to -3} \frac{x^2 + 3x}{x^2 - x - 12} = \lim_{x \to -3} \frac{x}{x - 4} = \frac{-3}{-3 - 4} = \left\lfloor \frac{3}{7} \right\rfloor.$$

Remark. This problem is Exercise 12 in Section 2.3 of the textbook.

3. In the graph below, which of the values $\lim_{x\to 0} f(x)$ and $\lim_{x\to 2^+} f(x)$ and $\lim_{x\to\infty} f(x)$ is the largest?

Solution. Inspecting the graph reveals that $\lim_{x\to 0} f(x)$ is some positive number less than 1, and $\lim_{x\to 2^+} f(x) = 1$. Since only a portion of the graph is shown, there is no way to be absolutely certain about the value of $\lim_{x\to\infty} f(x)$, but the picture strongly suggests that $\lim_{x\to\infty} f(x) = 2$. Under this assumption, the largest of the three limits is $\boxed{\lim_{x\to\infty} f(x)}$.