Quiz solutions

January 24, 2019

1. Determine the vector projection of the vector $3 \vec{\imath}+\vec{\jmath}$ onto the vector $\vec{\imath}+2 \vec{\jmath}$.

Solution. Since $|\vec{\imath}+2 \vec{\jmath}|=\sqrt{1^{2}+2^{2}}=\sqrt{5}$, a unit vector in the direction of $\vec{\imath}+2 \vec{\jmath}$ is $\frac{\vec{\imath}}{\sqrt{5}}+\frac{2 \vec{\jmath}}{\sqrt{5}}$. The scalar projection of the vector $3 \vec{\imath}+\vec{\jmath}$ onto the vector $\vec{\imath}+2 \vec{\jmath}$ is therefore equal to the dot product

$$
(3 \vec{\imath}+\vec{\jmath}) \cdot\left(\frac{\vec{\imath}}{\sqrt{5}}+\frac{2 \vec{\jmath}}{\sqrt{5}}\right), \quad \text { or } \quad \frac{3}{\sqrt{5}}+\frac{2}{\sqrt{5}}, \quad \text { or } \frac{5}{\sqrt{5}}, \quad \text { or } \sqrt{5} .
$$

The vector projection is this scalar multiplied times the already determined unit vector:

$$
\sqrt{5}\left(\frac{\vec{l}}{\sqrt{5}}+\frac{2 \vec{\jmath}}{\sqrt{5}}\right), \quad \text { or } \quad \vec{\imath}+2 \vec{\jmath} .
$$

Remark. A surprise is that the answer turns out to be equal to one of the original vectors. The explanation is seen in the diagram: a perpendicular dropped from the head of the vector $\langle 3,1\rangle$ to the line with slope 2 hits that line precisely at the head of the vector $\langle 1,2\rangle$.

2. Compute the value of $\lim _{x \rightarrow-3} \frac{x^{2}+3 x}{x^{2}-x-12}$.

Solution. Factor and cancel. If $x \neq-3$, then

$$
\frac{x^{2}+3 x}{x^{2}-x-12}=\frac{x(x+3)}{(x-4)(x+3)}=\frac{x}{x-4} .
$$

Therefore

$$
\lim _{x \rightarrow-3} \frac{x^{2}+3 x}{x^{2}-x-12}=\lim _{x \rightarrow-3} \frac{x}{x-4}=\frac{-3}{-3-4}=\frac{3}{7}
$$

Remark. This problem is Exercise 12 in Section 2.3 of the textbook.
3. In the graph below, which of the values $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 2^{+}} f(x)$ and $\lim _{x \rightarrow \infty} f(x)$ is the largest?

Solution. Inspecting the graph reveals that $\lim _{x \rightarrow 0} f(x)$ is some positive number less than 1 , and $\lim _{x \rightarrow 2^{+}} f(x)=1$. Since only a portion of the graph is shown, there is no way to be absolutely certain about the value of $\lim _{x \rightarrow \infty} f(x)$, but the picture strongly suggests that $\lim _{x \rightarrow \infty} f(x)=2$. Under this assumption, the largest of the three limits is $\lim _{x \rightarrow \infty} f(x)$.

