Quiz solutions

January 31, 2019

1. When is the first exam?

Solution. The first exam takes place in class on Thursday, February 14.
2. Compute $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$.

Solution. Multiply the numerator and the denominator by $\sqrt{x}+1$:

$$
\frac{\sqrt{x}-1}{x-1}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{(x-1)(\sqrt{x}+1)}=\frac{x-1}{(x-1)(\sqrt{x}+1)}=\frac{1}{\sqrt{x}+1}
$$

(as long as $x \neq 1$). Therefore

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}=\lim _{x \rightarrow 1} \frac{1}{\sqrt{x}+1}=\frac{1}{2}
$$

3. $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{|x-2|}=$?

Which of the following is the best answer, and why?
(a) $+\infty$
(b) $-\infty$
(c) 0
(d) does not exist

Solution. The answer is 0 . To see why, notice that the numerator $x^{2}-4 x+4$ factors as $(x-2)^{2}$, so the difficulty is mainly that there is an absolute value in the denominator.
Method 1. Observe that $(x-2)^{2}=|x-2|^{2}$, since the square of a real number is positive (or zero). Therefore

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{|x-2|}=\lim _{x \rightarrow 2} \frac{|x-2|^{2}}{|x-2|}=\lim _{x \rightarrow 2}|x-2|=0
$$

Method 2. Eliminate the absolute value by considering one-sided limits. If $x>2$, then $|x-2|=x-2$, so

$$
\lim _{x \rightarrow 2^{+}} \frac{x^{2}-4 x+4}{|x-2|}=\lim _{x \rightarrow 2^{+}} \frac{(x-2)^{2}}{x-2}=\lim _{x \rightarrow 2^{+}}(x-2)=0
$$

And if $x<2$, then $|x-2|=2-x$, so

$$
\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4 x+4}{|x-2|}=\lim _{x \rightarrow 2^{-}} \frac{(x-2)^{2}}{2-x}=\lim _{x \rightarrow 2^{-}} \frac{(2-x)^{2}}{2-x}=\lim _{x \rightarrow 2^{-}}(2-x)=0 .
$$

Since the one-sided limits match up, the two-sided limit $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{|x-2|}$ exists and equals 0 .
Method 3. Express $\frac{x^{2}-4 x+4}{|x-2|}$ as $\frac{(x-2)}{|x-2|}(x-2)$ when $x \neq 2$. Now

$$
-1 \leq \frac{(x-2)}{|x-2|} \leq 1
$$

and $\lim _{x \rightarrow 2}(x-2)=0$, so the Squeeze Theorem applies and shows that

$$
\lim _{x \rightarrow 2} \frac{(x-2)}{|x-2|}(x-2)=0
$$

4. Use the graph of f below to find a positive number δ such that

$$
\text { if } \quad|x-1|<\delta, \quad \text { then }|f(x)|<0.1
$$

Solution. The graph indicates that if $0.77<x<1.18$, then $|f(x)|<0.1$. The restriction on x can be rewritten as the statement that $-0.23<x-1<0.18$. Any smaller range of values for x also will guarantee that $|f(x)|<0.1$. Since the goal is to restrict x by a symmetric inequality of the form $-\delta<x-1<\delta$, the optimal choice of δ is 0.18 . Any smaller positive value for δ will work too.

