Examination 1

1. Suppose $\vec{v}=\langle 0,1\rangle$ and $\vec{w}=\langle 2,3\rangle$. Compute the length $|\vec{v}-3 \vec{w}|$.
2. Suppose vector \vec{v} has length 2 , and vector \vec{w} has length 14 , and the angle between vectors \vec{v} and \vec{w} is $\pi / 3$ radians (equivalently, 60 degrees). Determine the dot product $\vec{v} \cdot \vec{w}$.
3. Compute the vector projection of the vector $4 \vec{\imath}+3 \vec{\jmath}$ onto the vector $\vec{\imath}+2 \vec{\jmath}$.
4. Compute the following limit: $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+2 x-2}$.
5. (a) State the precise definition of: " $\lim _{x \rightarrow 2} f(x)=3$." Begin your statement as follows: "For every positive number ε, \ldots ".
(b) Use this definition to prove that $\lim _{x \rightarrow 2}(5-x)=3$.
6. Sketch the graph of a function satisfying all of the following properties: $\lim _{x \rightarrow-\infty} f(x)=1$, $\lim _{x \rightarrow-1} f(x)=\infty, f(0)=0, \lim _{x \rightarrow 1^{-}} f(x)=-\infty, \lim _{x \rightarrow 1^{+}} f(x)=2$, the function f is continuous from the right at 1 , and $\lim _{x \rightarrow \infty} f(x)=0$.
7. Consider the graph of the function f shown below.

(a) At which numbers between -3 and 3 is the function not differentiable?
(b) Sketch the graph of f^{\prime} (that is, the derivative of f).

8. Optional extra-credit problem for Valentine's Day

The graph below is represented by parametric equations: $x=\frac{2 t}{1+t^{2}}$ and $y=\frac{1+2|t|-t^{2}}{1+t^{2}}$ (the parameter t being an unrestricted real number).

Find the coordinates of the points on the graph at which the tangent line is vertical.

