- 1. Suppose $\vec{v} = \langle 0, 1 \rangle$ and $\vec{w} = \langle 2, 3 \rangle$. Compute the length $|\vec{v} 3\vec{w}|$.
- 2. Suppose vector \vec{v} has length 2, and vector \vec{w} has length 14, and the angle between vectors \vec{v} and \vec{w} is $\pi/3$ radians (equivalently, 60 degrees). Determine the dot product $\vec{v} \cdot \vec{w}$.
- 3. Compute the vector projection of the vector $4\vec{i} + 3\vec{j}$ onto the vector $\vec{i} + 2\vec{j}$.

4. Compute the following limit:
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 2x - 2}$$

- 5. (a) State the precise definition of: " $\lim_{x\to 2} f(x) = 3$." Begin your statement as follows: "For every positive number ε, \dots ".
 - (b) Use this definition to prove that $\lim_{x \to 2} (5 x) = 3$.
- 6. Sketch the graph of a function satisfying all of the following properties: $\lim_{x \to -\infty} f(x) = 1$, $\lim_{x \to -1} f(x) = \infty$, f(0) = 0, $\lim_{x \to 1^-} f(x) = -\infty$, $\lim_{x \to 1^+} f(x) = 2$, the function f is continuous from the right at 1, and $\lim_{x \to \infty} f(x) = 0$.
- 7. Consider the graph of the function f shown below.

- (a) At which numbers between -3 and 3 is the function *not* differentiable?
- (b) Sketch the graph of f' (that is, the derivative of f).

8. Optional extra-credit problem for Valentine's Day

The graph below is represented by parametric equations: $x = \frac{2t}{1+t^2}$ and $y = \frac{1+2|t|-t^2}{1+t^2}$ (the parameter *t* being an unrestricted real number).

Find the coordinates of the points on the graph at which the tangent line is vertical.