Examination 2

Instructions. Your solution to each problem should include at least one complete sentence. If you make a computation, please state your strategy. (For example: "Now I calculate the first derivative by applying the quotient rule.")

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
2	3	4	5	6
3	4	5	6	7
4	5	6	7	8

Table of values for Problems 1 and 2

1. Suppose $h(x)=f(g(x))$. Use the table above to determine $h^{\prime}(2)$.
2. Use the table of values above to explain why there must be some real number x for which $f^{\prime \prime}(x)$ is equal to 0 . Assume that the second derivative $f^{\prime \prime}(x)$ exists and is continuous for every real number x.
3. Find the slope of the curve $x^{42}+x y+y^{3}=1$ at the point on the curve where $x=1$.
4. The parametric equations $x=t^{3}-2 t$ and $y=10 t^{3}+6 t^{2}$ determine a curve. Find an equation for the line tangent to the curve at the point on the curve where $t=1$.
5. Determine the maximum value of the polynomial $x^{4}-4 x^{3}+4 x^{2}+41$ on the interval where $0 \leq x \leq 2$.
6. Sketch the graph of a function f satisfying all of the following properties: $f^{\prime}(x)=1$ when $x<-1 ; f^{\prime}(x)<0$ when $-1<x<0 ; f^{\prime}(0)=0 ; f^{\prime}(x)>0$ when $0<x<2$; $\lim _{x \rightarrow 2^{-}} f^{\prime}(x)=\infty ; \lim _{x \rightarrow 2^{+}} f^{\prime}(x)=-\infty ; f^{\prime}(x)<0$ when $2<x<4 ; f^{\prime}(4)=0$; and $f^{\prime}(x)<0$ when $x>4$.
7. When x is a small positive number, is $e^{-42 x}$ larger than $1-42 x$ or smaller than $1-42 x$? Explain how you know.
8. Optional extra-credit problem for March Madness.

Suppose the volume of a sphere is increasing at a rate of $(48 / 7) \mathrm{cm}^{3} / \mathrm{sec}$. How fast is the circumference of the sphere changing when the radius is 12 cm ?
Remark. This problem is motivated by the current NCAA basketball tournament, in which the TAMU women's team has advanced to the third round. The size of a basketball is commonly stated in terms of the circumference, which equals 2π times the radius. The volume of a sphere equals $\frac{4}{3} \pi$ times the cube of the radius. A men's basketball has a radius of about 12 cm , and a women's basketball has a radius about half a centimeter smaller.

