Calculus Final Examination

Instructions. Your solution to each problem should include at least one complete sentence. When making a computation, please state your strategy. (For example: "Now I calculate the first derivative by applying the quotient rule.")

- 1. Which of the following three numbers is smallest? Explain how you know.
 - (a) $|\langle 1, -2 \rangle|$ (b) $3\vec{i} \cdot (4\vec{i} 5\vec{j})$ (c) $\lim_{x \to 0} \frac{e^{6x} 1}{7x}$
- 2. Suppose the position vector $\vec{r}(t)$ of a curve is $\ln(t)\vec{i} + \sin(\pi t)\vec{j}$ when t > 0. Find an equation of the line tangent to the curve at the point where t = 1.
- 3. Consider the slope $\frac{dy}{dx}$ at the point on the graph where x = 0. For which of the following equations is that slope largest? Explain how you know.

(a)
$$y = \frac{1+x}{1-x}$$
 (b) $y = x \tan(x)$ (c) $x^2 + xy + y^3 = 1$

- 4. Sketch the graph of a function having all of the following properties: the first derivative is positive when x < 0; the second derivative is negative when x < 0; the function has a discontinuity when x = 0; there is a local minimum when x = 1; there is an inflection point when x = 2; and there is a horizontal asymptote when $x \to +\infty$.
- 5. Which of the following integrals is largest? Explain how you know.

(a)
$$\int_0^1 x^2 dx$$
 (b) $\int_0^1 \sqrt{x} dx$ (c) $\int_0^1 \frac{x}{(1+x^2)^2} dx$

- 6. Is there a positive value of x for which x + cos(x) = 0? Explain why or why not.
- 7. State *two* of the following three theorems.
 - (a) the squeeze theorem for limits
 - (b) the intermediate-value theorem
 - (c) the mean-value theorem
- 8. Optional extra-credit problem. Suppose $f(x) = xe^{-x}$, and let A(t) denote the area under the graph of f between x = 0 and x = t, as indicated in the diagram. Determine $\frac{dA}{dt}$, the rate of change of the area, at the value of t for which f(t) is maximal.

