Final Examination

Instructions. Your solution to each problem should include at least one complete sentence. When making a computation, please state your strategy. (For example: "Now I calculate the first derivative by applying the quotient rule.")

1. Which of the following three numbers is smallest? Explain how you know.
(a) $|\langle 1,-2\rangle|$
(b) $3 \vec{\imath} \cdot(4 \vec{\imath}-5 \vec{\jmath})$
(c) $\lim _{x \rightarrow 0} \frac{e^{6 x}-1}{7 x}$
2. Suppose the position vector $\vec{r}(t)$ of a curve is $\ln (t) \vec{\imath}+\sin (\pi t) \vec{\jmath}$ when $t>0$. Find an equation of the line tangent to the curve at the point where $t=1$.
3. Consider the slope $\frac{d y}{d x}$ at the point on the graph where $x=0$. For which of the following equations is that slope largest? Explain how you know.
(a) $y=\frac{1+x}{1-x}$
(b) $y=x \tan (x)$
(c) $x^{2}+x y+y^{3}=1$
4. Sketch the graph of a function having all of the following properties: the first derivative is positive when $x<0$; the second derivative is negative when $x<0$; the function has a discontinuity when $x=0$; there is a local minimum when $x=1$; there is an inflection point when $x=2$; and there is a horizontal asymptote when $x \rightarrow+\infty$.
5. Which of the following integrals is largest? Explain how you know.
(a) $\int_{0}^{1} x^{2} d x$
(b) $\int_{0}^{1} \sqrt{x} d x$
(c) $\int_{0}^{1} \frac{x}{\left(1+x^{2}\right)^{2}} d x$
6. Is there a positive value of x for which $x+\cos (x)=0$? Explain why or why not.
7. State two of the following three theorems.
(a) the squeeze theorem for limits
(b) the intermediate-value theorem
(c) the mean-value theorem
8. Optional extra-credit problem. Suppose $f(x)=x e^{-x}$, and let $A(t)$ denote the area under the graph of f between $x=0$ and $x=t$, as indicated in the diagram. Determine $\frac{d A}{d t}$, the rate of change of the area, at the value of t for which $f(t)$ is maximal.

