1. Suppose $\vec{v} = \langle 0, 1 \rangle$ and $\vec{w} = \langle 2, 3 \rangle$. Compute the length $|\vec{v} - 3\vec{w}|$.

Solution. Since $\vec{v} - 3\vec{w} = \langle -6, -8 \rangle$, the length $|\vec{v} - 3\vec{w}|$ equals $\sqrt{36 + 64}$, or $\sqrt{100}$, or 10.

2. Suppose vector \vec{v} has length 2, and vector \vec{w} has length 14, and the angle between vectors \vec{v} and \vec{w} is $\pi/3$ radians (equivalently, 60 degrees). Determine the dot product $\vec{v} \cdot \vec{w}$.

Solution. The dot product of two vectors equals the product of the lengths times the cosine of the angle between the vectors. Since $\cos(\pi/3) = 1/2$, the dot product $\vec{v} \cdot \vec{w}$ equals $2 \times 14 \times (1/2)$, or 14.

3. Compute the vector projection of the vector $4\vec{i} + 3\vec{j}$ onto the vector $\vec{i} + 2\vec{j}$.

Solution. The vector projection of \vec{v} onto \vec{w} equals $\left(\vec{v} \cdot \frac{\vec{w}}{|\vec{w}|}\right) \frac{\vec{w}}{|\vec{w}|}$, or $\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|^2} \vec{w}$. Here $\vec{v} = 4\vec{i} + 3\vec{j}$ and $\vec{w} = \vec{i} + 2\vec{j}$. Since $\vec{v} \cdot \vec{w} = (4 \times 1) + (3 \times 2) = 10$, and $|\vec{w}|^2 = 1^2 + 2^2 = 5$, the required vector projection is $\frac{10}{5}\vec{w}$, or $2\vec{w}$, or $2\vec{i} + 4\vec{j}$.

4. Compute the following limit: $\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 2x - 2}.$

Solution. The indicated function is continuous when x = 2, so the limit is correctly obtained by substituting 2 for x:

$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 2x - 2} = \frac{2^2 - 4}{2^2 + 2 \times 2 - 2} = \frac{0}{6} = 0.$$

5. (a) State the precise definition of: " $\lim_{x \to 2} f(x) = 3$." Begin your statement as follows: "For every positive number ε, \dots ".

Solution. For every positive number ε , there exists a positive number δ such that $|f(x) - 3| < \varepsilon$ whenever $0 < |x - 2| < \delta$.

(b) Use this definition to prove that $\lim_{x\to 2} (5-x) = 3$.

Solution. Take δ to be equal to ε . To confirm that the definition is satisfied, observe that if $|x-2| < \delta = \varepsilon$, then $|f(x)-3| = |(5-x)-3| = |2-x| = |x-2| < \varepsilon$.

6. Sketch the graph of a function satisfying all of the following properties: $\lim_{x \to -\infty} f(x) = 1$, $\lim_{x \to -1} f(x) = \infty$, f(0) = 0, $\lim_{x \to 1^-} f(x) = -\infty$, $\lim_{x \to 1^+} f(x) = 2$, the function f is continuous from the right at 1, and $\lim_{x \to \infty} f(x) = 0$.

Solution. The following graph shows one of many possible correct answers.

7. Consider the graph of the function f shown below.

(a) At which numbers between -3 and 3 is the function *not* differentiable?

Solution. At -1, the function is not even continuous, so the function certainly is not differentiable. At 0, the slope on the left-hand side is negative but the slope on the right-hand side is approaching 0, so the function is not differentiable. At 1, the slope on the left-hand side is positive but the slope on the right-hand side is 0, so the function is not differentiable.

(b) Sketch the graph of f' (that is, the derivative of f).

Solution. Between -3 and -1, the slope is constantly equal to 1/2. Between -1 and 0, the slope is negative and decreasing (getting more negative). Between 0 and 1, the slope is positive and increasing. Between 1 and 3, the slope is constantly equal to 0. The graph of the derivative therefore looks something like the graph below.

8. Optional extra-credit problem for Valentine's Day

The graph below is represented by parametric equations: $x = \frac{2t}{1+t^2}$ and $y = \frac{1+2|t|-t^2}{1+t^2}$ (the parameter *t* being an unrestricted real number).

Find the coordinates of the points on the graph at which the tangent line is vertical.

Solution. If you think of sweeping a vertical line across the picture, it should be geometrically evident that this vertical line will be tangent to the curve at the point where *x* takes the largest possible value. The question then becomes to determine the maximum value of the fraction $\frac{2t}{1+t^2}$. Since a square can never be negative, $0 \le (1-t)^2 = 1 - 2t + t^2$. Adding 2*t* to both sides shows that $2t \le 1 + t^2$, or $\frac{2t}{1+t^2} \le 1$. This maximum value of 1 is attained when (and only when) t = 1. The value of *y* when t = 1 is 1 as well, so the tangent line is vertical at the point (1, 1) on the graph. By symmetry, the tangent line is vertical at the point (-1, 1) too.

Another way to think about the problem is that the tangent line is vertical when the instantaneous rate of change of x equals 0, that is, when $\frac{dx}{dt} = 0$. Computing $\frac{dx}{dt}$ will be easier after we know the quotient rule for derivatives, but the calculation is feasible

Calculus

Examination 1

from the limit definition that we know now. Namely,

$$\frac{dx}{dt} = \lim_{h \to 0} \frac{\frac{2(t+h)}{1+(t+h)^2} - \frac{2t}{1+t^2}}{h} = \lim_{h \to 0} \frac{\frac{2(t+h)(1+t^2) - 2t[1+(t+h)^2]}{[1+(t+h)^2](1+t^2)}}{h}.$$

Now do some algebra. Combine the two denominators and multiply out the numerator to get

$$\lim_{h \to 0} \frac{2h(1-t^2-th)}{h[1+(t+h)^2](1+t^2)}.$$

Cancel the common factor of h and then send h to 0 to deduce that

$$\frac{dx}{dt} = \frac{2(1-t^2)}{(1+t^2)^2}.$$

Evidently $\frac{dx}{dt} = 0$ when $t = \pm 1$, which shows again that the tangent line is vertical at the points $(\pm 1, 1)$ on the graph.