Examination 1

1. Suppose $\vec{v}=\langle 0,1\rangle$ and $\vec{w}=\langle 2,3\rangle$. Compute the length $|\vec{v}-3 \vec{w}|$.

Solution. Since $\vec{v}-3 \vec{w}=\langle-6,-8\rangle$, the length $|\vec{v}-3 \vec{w}|$ equals $\sqrt{36+64}$, or $\sqrt{100}$, or 10 .
2. Suppose vector \vec{v} has length 2 , and vector \vec{w} has length 14 , and the angle between vectors \vec{v} and \vec{w} is $\pi / 3$ radians (equivalently, 60 degrees). Determine the dot product $\vec{v} \cdot \vec{w}$.

Solution. The dot product of two vectors equals the product of the lengths times the cosine of the angle between the vectors. Since $\cos (\pi / 3)=1 / 2$, the dot product $\vec{v} \cdot \vec{w}$ equals $2 \times 14 \times(1 / 2)$, or 14 .
3. Compute the vector projection of the vector $4 \vec{\imath}+3 \vec{\jmath}$ onto the vector $\vec{\imath}+2 \vec{\jmath}$.

Solution. The vector projection of \vec{v} onto \vec{w} equals $\left(\vec{v} \cdot \frac{\vec{w}}{|\vec{w}|}\right) \frac{\vec{w}}{|\vec{w}|}$, or $\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|^{2}} \vec{w}$. Here $\vec{v}=4 \vec{\imath}+3 \vec{\jmath}$ and $\vec{w}=\vec{\imath}+2 \vec{\jmath}$. Since $\vec{v} \cdot \vec{w}=(4 \times 1)+(3 \times 2)=10$, and $|\vec{w}|^{2}=1^{2}+2^{2}=5$, the required vector projection is $\frac{10}{5} \vec{w}$, or $2 \vec{w}$, or $2 \vec{\imath}+4 \vec{\jmath}$.
4. Compute the following limit: $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+2 x-2}$.

Solution. The indicated function is continuous when $x=2$, so the limit is correctly obtained by substituting 2 for x :

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+2 x-2}=\frac{2^{2}-4}{2^{2}+2 \times 2-2}=\frac{0}{6}=0 .
$$

5. (a) State the precise definition of: " $\lim _{x \rightarrow 2} f(x)=3$." Begin your statement as follows: "For every positive number ε, \ldots.

Solution. For every positive number ε, there exists a positive number δ such that $|f(x)-3|<\varepsilon$ whenever $0<|x-2|<\delta$.
(b) Use this definition to prove that $\lim _{x \rightarrow 2}(5-x)=3$.

Solution. Take δ to be equal to ε. To confirm that the definition is satisfied, observe that if $|x-2|<\delta=\varepsilon$, then $|f(x)-3|=|(5-x)-3|=|2-x|=|x-2|<\varepsilon$.

Examination 1

6. Sketch the graph of a function satisfying all of the following properties: $\lim _{x \rightarrow-\infty} f(x)=1$, $\lim _{x \rightarrow-1} f(x)=\infty, f(0)=0, \lim _{x \rightarrow 1^{-}} f(x)=-\infty, \lim _{x \rightarrow 1^{+}} f(x)=2$, the function f is continuous from the right at 1 , and $\lim _{x \rightarrow \infty} f(x)=0$.

Solution. The following graph shows one of many possible correct answers.

7. Consider the graph of the function f shown below.

(a) At which numbers between -3 and 3 is the function not differentiable?

Solution. At -1 , the function is not even continuous, so the function certainly is not differentiable. At 0 , the slope on the left-hand side is negative but the slope on the right-hand side is approaching 0 , so the function is not differentiable. At 1 , the slope on the left-hand side is positive but the slope on the right-hand side is 0 , so the function is not differentiable.
(b) Sketch the graph of f^{\prime} (that is, the derivative of f).

Solution. Between -3 and -1 , the slope is constantly equal to $1 / 2$. Between -1 and 0 , the slope is negative and decreasing (getting more negative). Between 0 and 1 , the slope is positive and increasing. Between 1 and 3 , the slope is constantly equal to 0 . The graph of the derivative therefore looks something like the graph below.

Examination 1

8. Optional extra-credit problem for Valentine's Day

The graph below is represented by parametric equations: $x=\frac{2 t}{1+t^{2}}$ and $y=\frac{1+2|t|-t^{2}}{1+t^{2}}$ (the parameter t being an unrestricted real number).

Find the coordinates of the points on the graph at which the tangent line is vertical.

Solution. If you think of sweeping a vertical line across the picture, it should be geometrically evident that this vertical line will be tangent to the curve at the point where x takes the largest possible value. The question then becomes to determine the maximum value of the fraction $\frac{2 t}{1+t^{2}}$. Since a square can never be negative, $0 \leq(1-t)^{2}=1-2 t+t^{2}$. Adding $2 t$ to both sides shows that $2 t \leq 1+t^{2}$, or $\frac{2 t}{1+t^{2}} \leq 1$. This maximum value of 1 is attained when (and only when) $t=1$. The value of y when $t=1$ is 1 as well, so the tangent line is vertical at the point $(1,1)$ on the graph. By symmetry, the tangent line is vertical at the point $(-1,1)$ too.

Another way to think about the problem is that the tangent line is vertical when the instantaneous rate of change of x equals 0 , that is, when $\frac{d x}{d t}=0$. Computing $\frac{d x}{d t}$ will be easier after we know the quotient rule for derivatives, but the calculation is feasible

Examination 1

from the limit definition that we know now. Namely,

$$
\frac{d x}{d t}=\lim _{h \rightarrow 0} \frac{\frac{2(t+h)}{1+(t+h)^{2}}-\frac{2 t}{1+t^{2}}}{h}=\lim _{h \rightarrow 0} \frac{\frac{2(t+h)\left(1+t^{2}\right)-2 t\left[1+(t+h)^{2}\right]}{\left[1+(t+h)^{2}\right]\left(1+t^{2}\right)}}{h} .
$$

Now do some algebra. Combine the two denominators and multiply out the numerator to get

$$
\lim _{h \rightarrow 0} \frac{2 h\left(1-t^{2}-t h\right)}{h\left[1+(t+h)^{2}\right]\left(1+t^{2}\right)} .
$$

Cancel the common factor of h and then send h to 0 to deduce that

$$
\frac{d x}{d t}=\frac{2\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}}
$$

Evidently $\frac{d x}{d t}=0$ when $t= \pm 1$, which shows again that the tangent line is vertical at the points $(\pm 1,1)$ on the graph.

