
Math 221 Final Examination
Several Variable Calculus

Spring 2013

Instructions These problems should be viewed as essay questions. Before start-
ing a calculation, you should explain your strategy in words.

Please write your solutions on your own paper. Each of the 10 problems counts
for 10 points.

1. Find parametric equations for the line passing through the points (2, 2, 1)
and (5, 0, 1).

Solution. The vector joining the points is ⟨5− 2, 0− 2, 1− 1⟩, or ⟨3,−2, 0⟩.
Accordingly, parametric equations for the line can be written as follows:

x = 2 + 3t,
y = 2 − 2t,
z = 1,

where t is the parameter. Although the line is unique, the parametric equa-
tions are not unique. Another correct answer is

x = 5 + 3t,
y = −2t,
z = 1.

2. Compute the volume of the parallelepiped determined by the three vectors
⟨1, 0, 0⟩ and ⟨2, 3, 0⟩ and ⟨4, 5, 6⟩.

Solution. The volume equals the magnitude of the scalar triple product of
the three vectors, which can be computed by the following determinant:
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|

|

|

|

|

1 0 0
2 3 0
4 5 6

|

|
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|

|

|

|

=
|

|

|
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|

3 0
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|

|

|

|

|

+ 0 + 0 = 18.

Remark This calculation is the basis of the formula for changing variables
in multiple integrals. Suppose new variables u, v, and w are related to x, y,
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and z as follows:

x = u + 2v + 4w
y = 3v + 5w
z = 6w.

Then the three given vectors in xyz-space correspond to the vectors ⟨1, 0, 0⟩,
⟨0, 1, 0⟩, and ⟨0, 0, 1⟩ in uvw-space. The parallelepiped in xyz-space corre-
sponds to a cube of side 1 in uvw-space, which has volume equal to 1. The
Jacobian determinant

)(x, y, z)
)(u, v,w)

=
|

|

|

|

|

|

|

1 2 4
0 3 5
0 0 6

|

|

|

|

|

|

|

= 18

gives the magnification factor relating volume in uvw-space to volume in
xyz-space.

3. Find an equation for the plane tangent to the paraboloid z = x2 + y2 at the
point (1, 2, 5).

Solution. Since )z
)x

|

|

|

|(1,2,5)
= 2 and )z

)y
|

|

|

|(1,2,5)
= 4, an equation for the tangent

plane can be written as follows:

z − 5 = 2(x − 1) + 4(y − 2), or 5 = 2x + 4y − z.

An alternative approach is to rewrite the paraboloid in the form of a level
surface z − x2 − y2 = 0 and compute a normal vector as the gradient:

∇
(

z − x2 − y2
)|

|

|

|(1,2,5)
= ⟨−2x,−2y, 1⟩

|

|

|

|(1,2,5)
= ⟨−2,−4, 1⟩.

Then the tangent plane can be written as follows:

−2(x − 1) − 4(y − 2) + 1(z − 5) = 0,

which again simplifies to 2x + 4y − z = 5.
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4. In which direction does the function f (x, y, z) = y2 − z3 increase most
rapidly at the point (2, 2, 1)?

Solution. The function increasesmost rapidly in the direction of the gradient
vector, and

∇f
|

|

|

|(2,2,1)
= ⟨0, 2y,−3z2⟩

|

|

|

|(2,2,1)
= ⟨0, 4,−3⟩.

Usually a direction vector is taken to be a unit vector. Normalizing the vector
above by dividing by the length gives the unit vector ⟨0, 4

5
, −3

5
⟩.

5. Determine the (absolute) maximum value of the function f (x, y) = x + y2
on the closed disk where x2 + y2 ≤ 4.

Solution. Since ∇f = ⟨1, 2y⟩, and the first component is never equal to 0,
there are no critical points of f inside the disk. Consequently, the problem
reduces to finding the maximum value of f (x, y) on the boundary circle,
where x2 + y2 = 4.
According to the method of Lagrange multipliers, the maximum value on
the boundary must occur at a point where ∇f is parallel to the gradient of
the constraint function: namely, ⟨2x, 2y⟩. The vectors ⟨1, 2y⟩ and ⟨2x, 2y⟩
are parallel when x = 1∕2 (in which case the vectors are equal) and when
y = 0.
On the boundary circle, if y = 0 then x = ±2, so f (x, y) = ±2. On the other
hand, if x = 1∕2 then y2 = 4 − (1∕2)2, so f (x, y) = (1∕2) + 4 − (1∕2)2 =
17∕4. Of these candidate values of f (x, y), the largest is 17∕4, so that value
is the maximum of f (x, y) on the closed disk.
An alternative method for the finding the maximum value on the boundary is
to parametrize the circle by setting x equal to 2 cos(�) and y equal to 2 sin(�).
Then f (x, y) becomes 2 cos(�)+4 sin2(�). This single-variable function can
be extremized by finding the critical points:

0 = d
d�

(

2 cos(�) + 4 sin2(�)
)

= −2 sin(�) + 8 sin(�) cos(�).

This equation implies that either sin(�) = 0 or cos(�) = 1∕4. In the first case,
cos(�) = ±1, so the value of f becomes ±2. In the second case, sin2(�) =
1 − cos2(�) = 1 − (1∕4)2, so the value of f becomes (2∕4) + 4(1 − (1∕4)2),
or 17∕4. The conclusion again is that 17∕4 is the maximum value.
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6. Compute the length of the curve 9y2 = 4x3 starting at the point (0, 0) and
ending at the point (1, 2

3
).

Solution. One method is to rewrite the equation of the curve in explicit form
as y = (2∕3)x3∕2 (with the positive square root since the relevant part of the
curve lies in the first quadrant). Then dy∕ dx = x1∕2, so

√

1 + (dy∕ dx)2 =
√

1 + x, and the length of the curve equals

∫

1

0

√

1 + x dx = 2
3
(

1 + x
)3∕2|

|

|

|

1

0
= 2

3

(

2
√

2 − 1
)

.

Another method is to parametrize the curve via x = t2 and y = (2∕3)t3,
where 0 ≤ t ≤ 1. Then dx∕ dt = 2t and dy∕ dt = 2t2, so

√

(

dx
dt

)2

+
(

dy
dt

)2

=
√

(2t)2 + (2t2)2 = 2t
√

1 + t2.

Therefore the length of the curve equals

∫

1

0
2t
√

1 + t2 dt = 2
3
(

1 + t2
)3∕2|

|

|

|

1

0
= 2

3

(

2
√

2 − 1
)

,

as before.

7. Evaluate the double integral∬D y dA, whereD denotes the region in the first
quadrant lying above the hyperbola xy = 1 and the line y = x and below the
line y = 2.

Solution. This problem is Exercise 22 on page 863 in the Chapter 13 review.
Here is a picture of the region:

y

x1 21
2

2

1
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The integral can be evaluated as an iterated integral:

∫

2

1 ∫

y

1∕y
y dx dy = ∫

2

1
y
(

y − 1
y

)

dy =
[

1
3
y3 − y

]2

1
= 4

3
.

It would be more complicated to integrate first with respect to y (for you
would have to split the integral into two pieces).

8. Find the volume of the solid that lies above the paraboloid z = x2 + y2 and
below the cone z =

√

x2 + y2.

Solution. The two surfaces intersect when x2 + y2 = 1, that is, when z = 1.
Here is the set-up for the volume integral in cylindrical coordinates:

∫

2�

0 ∫

1

0 ∫

r

r2
r dz dr d� = ∫

2�

0 ∫

1

0
r
(

r − r2
)

dr d�

= ∫

2�

0

[

1
3
r3 − 1

4
r4
]1

0
d�

= �
6
.

9. Evaluate the line integral ∫C F⃗ ⋅ dr⃗, where F⃗ (x, y) = y{̂+x|̂ and the curve C
is given by r⃗(t) = t2 {̂ − t3|̂, 0 ≤ t ≤ 1.

Solution. The endpoints of the curve are (0, 0) (when t = 0) and (1,−1)
(when t = 1). Since the vector field F⃗ is the gradient of the function xy (by
inspection), the line integral equals xy||

|

(1,−1)

(0,0)
, or−1. Another way of phrasing

this calculation is that

∫C
F⃗ ⋅ dr⃗ = ∫C

y dx + x dy = ∫C
d(xy) = xy||

|

(1,−1)

(0,0)
= −1.

An alternative method is to use the parametrization of the curve:

∫C
y dx + x dy = ∫

1

0

(

−t3
) (

2t dt
)

+
(

t2
) (

−3t2 dt
)

.

The integral simplifies to ∫ 1
0

(

−5t4
)

dt, which evaluates to −1.
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10. Evaluate the flux integral ∬S F⃗ ⋅ dS⃗, where F⃗ (x, y, z) = x{̂ − zk̂ and the
(open) surface S, oriented upward, is the part of the sphere x2+ y2+ z2 = 2
that lies above the plane z = 1.

Solution.
Method 1 Since the surface is open, the divergence theorem is not directly
applicable. But the divergence theorem can be brought into play by adding
and subtracting the integral over a disk of radius 1 (oriented downward) that
closes the bottom of the surface. Namely,

∬S
F⃗ ⋅ dS⃗ = ∬S plus disk

F⃗ ⋅ dS⃗ −∬disk
F⃗ ⋅ dS⃗

= ∭solid

(

∇ ⋅ F⃗
)

dV −∬disk
F⃗ ⋅ dS⃗.

Now ∇ ⋅ F⃗ = 1− 1 = 0, so the problem reduces to −∬disk F⃗ ⋅ dS⃗, where the
disk is oriented in the −k̂ direction. Since F⃗ ⋅

(

−k̂
)

= z, and z = 1 on the
disk, the integral becomes

−∬disk of radius 1
dA, or − �.

Method 2 By inspection, the vector field F⃗ equals the curl of −xz|̂. By
Stokes’s theorem,

∬S
F⃗ ⋅ dS⃗ = ∬S

∇ ×
(

−xz|̂
)

⋅ dS⃗ = ∫C

(

−xz|̂
)

⋅ dr⃗,

where C is the curve bounding the surface: namely, a circle of radius 1 at
height 1 (oriented counterclockwise since the surface is oriented upward).
Accordingly, z = 1 on the curve, and

(

−xz|̂
)

⋅dr⃗ = −x dy onC . The integral
now equals ∫circle −x dy, which by Green’s theorem equals −∬disk dA. Thus
the answer is the negative of the area of a disk of radius 1, or −�.

Method 3 The integral can be computed directly from the definition of a
surface integral. Rewrite the equation of the sphere in the form z = f (x, y),
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where f (x, y) =
√

2 − x2 − y2. Then

F⃗ ⋅ dS⃗ = F⃗ ⋅ ⟨−fx,−fy, 1⟩ dA

=

(

x2
√

2 − x2 − y2
−
√

2 − x2 − y2
)

dA,

where the integration with respect to dA takes place on a disk of radius 1.
Convert to polar coordinates to get

∫

1

0 ∫

2�

0

(

r2 cos2(�)
√

2 − r2
−
√

2 − r2
)

r d� dr.

Computing the � integral gives

� ∫

1

0

(

r2
√

2 − r2
− 2

√

2 − r2
)

r dr.

Now change variables by setting u equal to 2 − r2 to get

�
2 ∫

2

1

(

2 − u
√

u
− 2

√

u

)

du = �
2 ∫

2

1

(

2
√

u
− 3

√

u

)

du

= �
2

[

4
√

u − 2u3∕2
]2

1
= −�.

Optional bonus problem for extra credit
A sombrero is modeled by the equation z = cos(r) in cylindrical coordinates,
where 0 ≤ r ≤ 4.

If the density function is 1
√

1 + sin2(r)
, find the center of mass of the sombrero.
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Solution. Both the surface itself and the density function are independent of the
polar angle �, so the x and y coordinates of the center of mass must be equal to 0.
Only the z coordinate needs to be computed.

The surface area element dS can be computed using your favorite coordinate
system. Here is the computation using polar coordinates.

The coordinate vector is ⟨r cos(�), r sin(�), cos(r)⟩, and what is needed is the
length of the cross product vector

|

|

|

|

|

|

|

{̂ |̂ k̂
cos(�) sin(�) − sin(r)

−r sin(�) r cos(�) 0

|

|

|

|

|

|

|

= {̂r sin(r) cos(�) + |̂r sin(r) sin(�) + k̂r.

That length is
√

r2 sin2(r) + r2, or r
√

1 + sin2(r). Thus the area element dS equals

r
√

1 + sin2(r) dr d�.
Accordingly, the mass of the sombrero equals

∫

2�

0 ∫

4

0
(density) r

√

1 + sin2(r) dr d� = ∫

2�

0 ∫

4

0
r dr d� = 16�.

Since z = cos(r), the z coordinate of the center of mass equals

1
16� ∫

2�

0 ∫

4

0
r cos(r) dr d� = 1

8 ∫

4

0
r cos(r) dr.

Integration by parts shows that the z coordinate of the center of mass equals

1
8 ∫

4

0
r cos(r) dr = 1

8
[

r sin(r) + cos(r)
]4
0 =

1
8
[

4 sin(4) + cos(4) − 1
]

(approximately −0.585).
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