Highlights

Math 304 Linear Algebra

Harold P. Boas

boas@tamu.edu

June 12, 2006

From Wednesday:

- basis and dimension
- transition matrix for change of basis

Today:

- row space and column space
- the rank-nullity property

Example

	/1	2	1	2	1\	
Let A =	2	4	3	7	1	
	\4	8	5	11	3/	

Three-part problem. Find a basis for

- the row space (the subspace of R⁵ spanned by the rows of the matrix)
- the column space (the subspace of R³ spanned by the columns of the matrix)
- the nullspace (the set of vectors \mathbf{x} such that $A\mathbf{x} = \mathbf{0}$)

We can analyze all three parts by Gaussian elimination, even though row operations change the column space.

Example continued

Notice that in each step, the second column is twice the first column; also, the second column is the sum of the third and fifth columns.

Row operations *change* the column space but *preserve* linear relations among the columns. The final row-echelon form shows that the column space has dimension equal to 2, and the first and third columns are linearly independent.

Example: interpretation

/1	2	1	2	1\		/1	2	0	-1	2\
2	4	3	7	1	→	0	0	1	3	-1
\4	8	5	11	3/	operations	0/	0	0	0	0/

- ▶ The dimension of the row space (called the *rank*) is 2.
- ▶ The dimension of the column space also equals the rank. Both equal the number of lead 1's in the row echelon form.
- One basis for the row space is the pair of vectors $(1,2,0,-1,2)^T$ and $(0,0,1,3,-1)^T$.
- One basis for the column space is the first and third

columns of the *original* matrix: namely, $\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$.

Rank and nullity

The example illustrates the following general principles.

- ▶ rank = dimension of row space
 - = dimension of column space
 - = number of lead 1's in row echelon form
- *nullity* = dimension of nullspace
 - = number of free variables in row echelon form
- rank + nullity = number of columns in matrix

Example: nullspace

$$\begin{pmatrix} 1 & 2 & 1 & 2 & 1 \\ 2 & 4 & 3 & 7 & 1 \\ 4 & 8 & 5 & 11 & 3 \end{pmatrix} \xrightarrow{\text{row}} \overrightarrow{\text{operations}} \begin{pmatrix} 1 & 2 & 0 & -1 & 2 \\ 0 & 0 & 1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

The lead variables are x_1 and x_3 . The other variables x_2 , x_4 , and x_5 are free variables (they can take arbitrary values). The nullspace consists of vectors of the form

$$\begin{pmatrix} -2x_2 + x_4 - 2x_5 \\ x_2 \\ -3x_4 + x_5 \\ x_4 \\ x_5 \end{pmatrix} = x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -3 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

The nullspace has dimension 3, and one basis is the vectors $(-2, 1, 0, 0, 0)^T$, $(1, 0, -3, 1, 0)^T$, and $(-2, 0, 1, 0, 1)^T$.