Math 311-102

Harold P. Boas boas@tamu.edu

Math 311-102 June 28, 2005: slide #1

Surface area

Example. A paraboloid is described by the parametric equation $g(u,v)=(u,v,u^2+v^2)$. Find the area of the part of the surface for which $u^2+v^2<1$.

Solution. Two tangent vectors are $\frac{\partial g}{\partial u}=(1,0,2u)$ and $\frac{\partial g}{\partial v}=(0,1,2v)$. The surface area element $d\sigma$ equals $\begin{vmatrix} \frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v} \end{vmatrix} du \, dv = \sqrt{1+4u^2+4v^2} \, du \, dv.$ The surface area is $\iint\limits_{u^2+v^2\leq 1} \sqrt{1+4u^2+4v^2} \, du \, dv = \iint\limits_{0\leq r\leq 1} \sqrt{1+4r^2} \, r \, dr \, d\theta$ $= 2\pi \int_0^1 r \sqrt{1+4r^2} \, dr = \frac{2\pi}{8} \int_1^5 \sqrt{t} \, dt \text{ (via } t=1+4r^2\text{)}$ $= \frac{2\pi}{8} \frac{2}{3} t^{3/2} \Big|_1^5 = \frac{\pi}{6} (5\sqrt{5}-1).$

Key formula:

Math 311-102

 $d\sigma = \left| \frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v} \right| \, du \, dv$

June 28, 2005; slide #2

Flux across a surface

Example. Find the flux of the vector field $\vec{F}(x,y,z) = (y,-x,z)$ across the surface S of the paraboloid $g(u,v) = (u,v,u^2+v^2)$, $u^2+v^2 \leq 1$.

Solution. The flux equals $\iint_S \vec{F} \cdot \vec{n} \, d\sigma$, where \vec{n} denotes the unit normal vector (another notation is $\iint_S \vec{F} \cdot d\vec{S}$), or

$$\iint\limits_{u^2+v^2\leq 1} \vec{F} \cdot \left(\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right) \ du \ dv. \ \text{Since} \ \frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v} = (-2u, -2v, 1), \ \text{the}$$

integrand $\vec{F} \cdot \left(\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v} \right)$ equals $-2uv + 2uv + u^2 + v^2$, and the integral equals $\iint\limits_{u^2 + v^2 \leq 1} (u^2 + v^2) \; du \, dv = \int_0^{2\pi} \int_0^1 r^3 \, dr \, d\theta = \pi/2.$

Key formula: $\text{flux} = \iint_S \vec{F} \cdot d\vec{S} = \iint_S \vec{F} \cdot \left(\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v} \right) \ du \ dv$

Math 311-102 June 28, 2005: slide #3