
Math 311-102 Quiz 2

Topics in Applied Mathematics I
Summer 2005

In solving the following problems, you may use any method other than
“My calculator says so.” To obtain full credit, show your work.

1. Suppose A =

(

1 0
4 5

)

and B =

(

9 8
0 2

)

. Compute A + 2B.

Addition and scalar multiplication act componentwise, so A + 2B =
(

1 + 2× 9 0 + 2× 8
4 + 2× 0 5 + 2× 2

)

=

(

19 16
4 9

)

.

2. If A =

(

1 −1
0 2

)

and B =





4 3
0 5

−2 1



, which of the matrix products

AB and BA is defined? Compute that product.

For a matrix product to make sense, the left-hand matrix must have
the same number of entries in a row as the right-hand matrix has in a
column. Therefore the matrix product BA is the one that is defined.

BA =





4× 1 + 3× 0 4× (−1) + 3× 2
0× 1 + 5× 0 0× (−1) + 5× 2
−2× 1 + 1× 0 −2× (−1) + 1× 2



 =





4 2
0 10

−2 4



.

3. Either compute the inverse of the matrix

(

3 6
2 4

)

or show that the

inverse does not exist.

(This is exercise 2 on page 86 of the textbook.)

Since the determinant of the matrix is 3× 4− 6× 2 = 12− 12 = 0, the
matrix is not invertible.

4. Find the determinant of the matrix









1 0 1 0
0 3 1 4
1 1 4 0

−1 −1 2 3









.

(This is exercise 2 on page 98 of the textbook.)

One could directly expand the determinant, but easier is to use row
operations to simplify the calculation. For example, subtract the first
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row from the third row, and add the first row to the fourth row to get
∣

∣

∣

∣

∣

∣

∣

∣

1 0 1 0
0 3 1 4
0 1 3 0
0 −1 3 3

∣

∣

∣

∣

∣

∣

∣

∣

. Expand on the first column to get

∣

∣

∣

∣

∣

∣

3 1 4
1 3 0

−1 3 3

∣

∣

∣

∣

∣

∣

. Add

the second row to the third row, and subtract 3 times the second row

from the first row to get

∣

∣

∣

∣

∣

∣

0 −8 4
1 3 0
0 6 3

∣

∣

∣

∣

∣

∣

. Expand on the first column to

get −

∣

∣

∣

∣

−8 4
6 3

∣

∣

∣

∣

. Factor out −4 from the first row and 3 from the second

row to get 12

∣

∣

∣

∣

2 −1
2 1

∣

∣

∣

∣

= 12(2− (−2)) = 48.

5. Find the inverse of the matrix









1 0 1 0
0 2 0 0
0 0 3 0
0 0 0 4









.

(This is exercise 20 on page 99 of the textbook.)

Using the row-reduction algorithm for finding the inverse matrix, divide
each row by its leading entry:








1 0 1 0
0 2 0 0
0 0 3 0
0 0 0 4









∣

∣

∣

∣

∣

∣

∣

∣









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









→









1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1









∣

∣

∣

∣

∣

∣

∣

∣









1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4









.

Subtract the third row from the first row:








1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









∣

∣

∣

∣

∣

∣

∣

∣









1 0 −1/3 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4









. Therefore the inverse matrix

equals









1 0 −1/3 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4









.
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