Welcome

Math 407
 Complex Variables
 Harold P. Boas

http://www.math.tamu.edu/~boas/courses/407-2017c/

What do we remember about calculus?

- chain rule for derivatives
- trigonometric identities
- intermediate-value theorem
- integration by parts
- Riemann sums
- multiple integrals
- differential equations
- partial derivatives
- Gauss's theorem, Green's theorem, Stokes's theorem

Examples you will learn how to explain

- $\int_{0}^{\infty} \frac{1}{x\left(1+x^{2}\right)} \log \left|\frac{x+\sqrt{3}}{x-\sqrt{3}}\right| d x=\frac{\pi^{2}}{6}$
- What is going on in this picture?

Example of an unsolved problem about complex variables

For which values of the complex variable z is $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{z}}=0$?
Riemann hypothesis: When $0<\operatorname{Re}(z)<1$, every solution has real part equal to $1 / 2$.

Bernhard Riemann
(1826-1866)

What are the complex numbers?

$a x^{2}+b x+c=0$ has solutions $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ (quadratic formula)
We create an "imaginary" number i with the property that
$i^{2}=-1$.
In general, complex numbers have the form $a+b i$, where a and b are real numbers.
Examples: $2+3 i, 4-7 i, 3,-4 i$

Example computations

1. Solve $\frac{1}{3-4 i}=a+b i$.

Method 1: multiply and divide by $3+4 i$:

$$
\frac{1}{3-4 i} \cdot \frac{3+4 i}{3+4 i}=\frac{3+4 i}{3^{2}-(4 i)^{2}}=\frac{3+4 i}{25}=\frac{3}{25}+\frac{4}{25} i
$$

Method 2: Clear the denominator to get the equivalent equation $1=(3-4 i)(a+b i)=3 a-4 i a+3 b i-(4 i)(b i)=$ $3 a+4 b+i(-4 a+3 b)$. This leads to simultaneous equations $1=3 a+4 b$ and $0=-4 a+3 b$.
2. Solve $\sqrt{3-4 i}=a+b i$.

Strategy: start by squaring both sides: $3-4 i=(a+b i)^{2}$.
Answer: $-2+i$ and $2-i$.
Check: $(-2+i)^{2}=3-4 i$.

Assignment

- Read section I. 1 in the textbook.
- Find an exercise at the end of section I. 1 that you don't know how to solve.

