Welcome

Math 407 Complex Variables Harold P. Boas http://www.math.tamu.edu/~boas/courses/407-2017c/

What do we remember about calculus?

- chain rule for derivatives
- trigonometric identities
- intermediate-value theorem
- integration by parts
- Riemann sums
- multiple integrals
- differential equations
- partial derivatives
- ► Gauss's theorem, Green's theorem, Stokes's theorem

Examples you will learn how to explain

•
$$\int_0^\infty \frac{1}{x(1+x^2)} \log \left| \frac{x+\sqrt{3}}{x-\sqrt{3}} \right| \, dx = \frac{\pi^2}{6}$$

What is going on in this picture?

Example of an unsolved problem about complex variables

For which values of the complex variable z is $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = 0?$

Riemann hypothesis: When $0 < \operatorname{Re}(z) < 1$, every solution has real part equal to 1/2.

Bernhard Riemann (1826–1866)

What are the complex numbers?

 $ax^2 + bx + c = 0$ has solutions $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (quadratic formula) We create an "imaginary" number *i* with the property that

 $i^2 = -1.$

In general, complex numbers have the form a + bi, where a and b are real numbers.

Examples: 2 + 3i, 4 - 7i, 3, -4i

Example computations

1. Solve
$$\frac{1}{3-4i} = a + bi$$
.
Method 1: multiply and divide by $3 + 4i$:

$$\frac{1}{3-4i} \cdot \frac{3+4i}{3+4i} = \frac{3+4i}{3^2-(4i)^2} = \frac{3+4i}{25} = \frac{3}{25} + \frac{4}{25}i$$

Method 2: Clear the denominator to get the equivalent equation 1 = (3 - 4i)(a + bi) = 3a - 4ia + 3bi - (4i)(bi) = 3a + 4b + i(-4a + 3b). This leads to simultaneous equations 1 = 3a + 4b and 0 = -4a + 3b.

2. Solve
$$\sqrt{3-4i} = a + bi$$
.
Strategy: start by squaring both sides: $3 - 4i = (a + bi)^2$.
Answer: $-2 + i$ and $2 - i$.
Check: $(-2 + i)^2 = 3 - 4i$.

Assignment

- ▶ Read section I.1 in the textbook.
- Find an exercise at the end of section I.1 that you don't know how to solve.