The complex logarithm

If the logarithm and the exponential function are to be inverses, then

$$
e^{\log (z)}=z=r e^{i \theta}=e^{\ln (r)+i \theta}
$$

so the only possible definition for the complex logarithm is

$$
\log (z)=\ln |z|+i \arg (z)
$$

Problem: There are infinitely many values for $\arg (z)$.
Solution: We can define $\arg (z)$ uniquely on the plane with a cut that prevents us from circling the origin.

Principal branch of the logarithm

For this branch, make a cut along the negative part of the real axis.

For the principal branch,

$$
\log (-1-i)=\ln \sqrt{2}-\frac{3 \pi i}{4}
$$

The textbook writes Log (capital letter) for the principal branch.
principal value:

$$
-\pi<\theta<\pi
$$

A nonstandard branch of the logarithm

For this branch, make a cut along the negative part of the imaginary axis.

For this nonstandard branch,

$$
\log (-1-i)=\ln \sqrt{2}+\frac{5 \pi i}{4}
$$

$$
-\frac{\pi}{2}<\theta<\frac{3 \pi}{2}
$$

Assignment due next class

- Section I.6: Exercise 2(a),(b)
- Section I.4: Exercise 1(b),(c)
- Section I.1: Exercise 1(i)

Quiz

1. Rewrite $e^{407 \pi i}$ in the form $a+b i$.
2. Draw a picture of the set $\{z \in \mathbb{C}: 0<\operatorname{Re}(z)<1\}$.
3. Find all three values of $(-8)^{1 / 3}$.
