Announcement

Exam 1 takes place Thursday, September 28.

Please bring your own paper to work on.

The material covered is Chapter I with the following exceptions:

- ► Section 3 on stereographic projection
- ► Riemann surfaces

Reminders on logarithms and powers

$$\log(z) = \ln|z| + i \arg(z)$$
$$z^w = e^{w \log(z)}$$

(multiple possible values)

More on exponential and trigonometric functions

$$e^{iz} = \cos(z) + i\sin(z)$$
$$e^{-iz} = \cos(z) - i\sin(z)$$

Averaging the two formulas shows that $cos(z) = \frac{e^{iz} + e^{-iz}}{2}$.

Similarly, subtracting shows that $sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$.

The hyperbolic functions are twisted versions:

$$\cosh(z) = \frac{e^z + e^{-z}}{2}$$
 and $\sinh(z) = \frac{e^z - e^{-z}}{2}.$

Exercises

- 1. Find all values of the complex variable z for which cos(z) = sin(z).
- 2. Find all values of the complex variable z for which $\cosh(z) = \sinh(z)$.
- 3. You know that $\cos^2(z) + \sin^2(z) = 1$. What is the relationship between $\cosh^2(z)$ and $\sinh^2(z)$?

Solution to Exercise 1

Rewrite the equation in terms of the complex exponential function:

$$\frac{e^{iz} + e^{-iz}}{2} = \frac{e^{iz} - e^{-iz}}{2i} \quad \text{or} \quad ie^{iz} + ie^{-iz} = e^{iz} - e^{-iz}.$$

Collect common terms to get $(1+i)e^{-iz} = (1-i)e^{iz}$.

Multiply by e^{iz} and divide by 1-i to get $\frac{1+i}{1-i}=e^{2iz}$.

Now
$$\frac{1+i}{1-i}$$
 simplifies to i , so

$$2iz = \log(i) = \ln|i| + i \arg(i) = 0 + i\left(\frac{\pi}{2} + 2n\pi\right).$$

Divide by 2i to get the final answer,

$$z = \frac{\pi}{4} + n\pi$$
, where *n* is an arbitrary integer.

Solution to Exercise 2

Rewrite the equation in terms of the exponential function:

$$\frac{e^z + e^{-z}}{2} = \frac{e^z - e^{-z}}{2}$$
 or $e^z + e^{-z} = e^z - e^{-z}$.

Subtract e^z from both sides to get $e^{-z}=-e^{-z}$. Now multiply both sides by e^z to get 1=-1, a contradiction.

The conclusion is that the original equation has no solution!

Solution to Exercise 3

$$\cosh(z) = \frac{e^z + e^{-z}}{2}, \quad \text{so} \quad \cosh^2(z) = \frac{1}{4} \left(e^{2z} + 2 + e^{-2z} \right).$$
$$\sinh(z) = \frac{e^z - e^{-z}}{2}, \quad \text{so} \quad \sinh^2(z) = \frac{1}{4} \left(e^{2z} - 2 + e^{-2z} \right).$$

Subtracting the second equation from the first shows that

$$\cosh^2(z) - \sinh^2(z) = 1.$$

Remark. The reason for the name "hyperbolic functions" is that the equation $x^2 - y^2 = 1$ represents a hyperbola in the x-y plane.

What should $\cos^{-1}(z)$ mean?

$$w = \cos^{-1}(z) \iff \cos(w) = z$$

Can we solve for w in terms of z ?

Write
$$\frac{e^{iw}+e^{-iw}}{2}=z$$
 or $e^{iw}-2z+e^{-iw}=0$. Multiply by e^{iw} to get $\left(e^{iw}\right)^2-2z\left(e^{iw}\right)+1=0$.

By the quadratic formula.

$$e^{iw} = \frac{2z \pm \sqrt{4z^2 - 4}}{2} = z \pm \sqrt{z^2 - 1}.$$

Therefore
$$iw = \log\left(z \pm \sqrt{z^2 - 1}\right)$$
, so $\cos^{-1}(z) = -i\log\left(z \pm \sqrt{z^2 - 1}\right)$ (infinitely many values).

Assignment (not to hand in)

Make yourself flash cards for all the main concepts and formulas from Chapter I.