Announcement

Exam 1 takes place Thursday, September 28.
Please bring your own paper to work on.
The material covered is Chapter I with the following exceptions:

- Section 3 on stereographic projection
- Riemann surfaces

Reminders on logarithms and powers

$$
\begin{aligned}
\log (z) & =\ln |z|+i \arg (z) \\
z^{w} & =e^{w \log (z)}
\end{aligned}
$$

(multiple possible values)

More on exponential and trigonometric functions

$$
\begin{aligned}
e^{i z} & =\cos (z)+i \sin (z) \\
e^{-i z} & =\cos (z)-i \sin (z)
\end{aligned}
$$

Averaging the two formulas shows that $\cos (z)=\frac{e^{i z}+e^{-i z}}{2}$.
Similarly, subtracting shows that $\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}$.
The hyperbolic functions are twisted versions:

$$
\cosh (z)=\frac{e^{z}+e^{-z}}{2} \quad \text { and } \quad \sinh (z)=\frac{e^{z}-e^{-z}}{2}
$$

Exercises

1. Find all values of the complex variable z for which $\cos (z)=\sin (z)$.
2. Find all values of the complex variable z for which $\cosh (z)=\sinh (z)$.
3. You know that $\cos ^{2}(z)+\sin ^{2}(z)=1$. What is the relationship between $\cosh ^{2}(z)$ and $\sinh ^{2}(z)$?

Solution to Exercise 1

Rewrite the equation in terms of the complex exponential function:

$$
\frac{e^{i z}+e^{-i z}}{2}=\frac{e^{i z}-e^{-i z}}{2 i} \quad \text { or } \quad i e^{i z}+i e^{-i z}=e^{i z}-e^{-i z}
$$

Collect common terms to get $(1+i) e^{-i z}=(1-i) e^{i z}$.
Multiply by $e^{i z}$ and divide by $1-i$ to get $\frac{1+i}{1-i}=e^{2 i z}$.
Now $\frac{1+i}{1-i}$ simplifies to i, so

$$
2 i z=\log (i)=\ln |i|+i \arg (i)=0+i\left(\frac{\pi}{2}+2 n \pi\right)
$$

Divide by $2 i$ to get the final answer,

$$
z=\frac{\pi}{4}+n \pi, \quad \text { where } n \text { is an arbitrary integer. }
$$

Solution to Exercise 2

Rewrite the equation in terms of the exponential function:

$$
\frac{e^{z}+e^{-z}}{2}=\frac{e^{z}-e^{-z}}{2} \quad \text { or } \quad e^{z}+e^{-z}=e^{z}-e^{-z}
$$

Subtract e^{z} from both sides to get $e^{-z}=-e^{-z}$. Now multiply both sides by e^{z} to get $1=-1$, a contradiction.

The conclusion is that the original equation has no solution!

Solution to Exercise 3

$$
\left.\begin{array}{rlrl}
\cosh (z) & =\frac{e^{z}+e^{-z}}{2}, & \text { so } & \cosh ^{2}(z)
\end{array}\right)=\frac{1}{4}\left(e^{2 z}+2+e^{-2 z}\right)
$$

Subtracting the second equation from the first shows that

$$
\cosh ^{2}(z)-\sinh ^{2}(z)=1
$$

Remark. The reason for the name "hyperbolic functions" is that the equation $x^{2}-y^{2}=1$ represents a hyperbola in the $x-y$ plane.

What should $\cos ^{-1}(z)$ mean?

$w=\cos ^{-1}(z) \Longleftrightarrow \cos (w)=z$
Can we solve for w in terms of z ?
Write $\quad \frac{e^{i w}+e^{-i w}}{2}=z \quad$ or $\quad e^{i w}-2 z+e^{-i w}=0$.
Multiply by $e^{i w}$ to get $\left(e^{i w}\right)^{2}-2 z\left(e^{i w}\right)+1=0$.
By the quadratic formula,

$$
e^{i v}=\frac{2 z \pm \sqrt{4 z^{2}-4}}{2}=z \pm \sqrt{z^{2}-1}
$$

Therefore iw $=\log \left(z \pm \sqrt{z^{2}-1}\right)$, so
$\cos ^{-1}(z)=-i \log \left(z \pm \sqrt{z^{2}-1}\right)$
(infinitely many values).

Assignment (not to hand in)

Make yourself flash cards for all the main concepts and formulas from Chapter I.

