Recap: The Cauchy-Riemann equations

Complex form:

$$
\frac{\partial f}{\partial x}=-i \frac{\partial f}{\partial y}
$$

Real form for $f=u+i v$:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

If f is to have a complex derivative, then these equations must be satisfied.

The founders

Augustin-Louis Cauchy (1789-1857)

Bernhard Riemann (1826-1866)

Rules for derivatives

The power rule, product rule, quotient rule, and chain rule carry over from real calculus to complex calculus.

Example

If $f(z)=i z^{2}+e^{i z} \sin (\pi z)$, then
$f^{\prime}(z)=2 i z+i e^{i z} \sin (\pi z)+e^{i z} \pi \cos (\pi z)$
Where something new happens is the case of functions that involve \bar{z} or $|z|$, or functions that are presented in terms of x and y instead of z.

Example of orthogonal curvilinear coordinate system

Suppose $w=f(z)=z^{2}=(x+y i)^{2}=x^{2}-y^{2}+2 i x y$. If $w=u+i v$, then $u(x, y)=x^{2}-y^{2}$, and $v(x, y)=2 x y$.
In real calculus, the curves where $u(x, y)=$ constant are called level curves of u.
The level curves of u and of v are families of mutually orthogonal hyperbolas:

Reminders on the gradient vector from real calculus

If $u(x, y)$ is a real function, and c is a constant, then the equation $u(x, y)=c$ defines a level curve of u.

The direction perpendicular (or orthogonal or normal) to the level curve is given by the gradient vector:

$$
\nabla u=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)
$$

Example

Suppose $u(x, y)=x^{2}+y^{2}$ and $c=1$.
Then $\nabla u=(2 x, 2 y)$.
This vector is orthogonal to the circle defined by the equation $x^{2}+y^{2}=1$.

Cauchy-Riemann equations imply orthogonal gradients

If u and v satisfy the Cauchy-Riemann equations, then the two gradient vectors have dot product (or inner product or scalar product) as follows:

$$
\nabla u \cdot \nabla v=\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}=\frac{\partial v}{\partial y} \frac{\partial v}{\partial x}-\frac{\partial v}{\partial x} \frac{\partial v}{\partial y}=0
$$

Deduction: The level curves of u and the level curves of v are orthogonal to each other.
(In real calculus, such families of curves are known as orthogonal trajectories.)

Assignment

- Section II.2, Exercise 1(c)
- Section II.2, Exercise 3
- Section II.3, Exercise 2

