Recap: The Cauchy-Riemann equations

Real form for $f=u+i v$:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

If f is to have a complex derivative, then these equations must be satisfied.

Another view of level curves: $w=z^{2}$

z plane

w plane

w plane

Exercise: Cauchy-Riemann and orthogonal trajectories

Suppose $u(x, y)=x^{3}-3 x y^{2}+y$.
Find a function $v(x, y)$ such that $u+i v$ will be a complex differentiable function.

Answer: $v(x, y)=3 x^{2} y-y^{3}-x$ (plus an optional constant). Moreover, $f(z)=z^{3}-i z$ (plus an optional imaginary constant).

Some terminology

A subset S of \mathbb{C} is called open if the set contains a whole disk around each of its points.

If a function f is complex differentiable at every point of an open set S, then f is called analytic on the set S.

A domain is an open set that is connected (all one piece).
We usually suppose that the domain of a function (the set where the function is defined) is a domain (a connected open set).

Harmonic functions

A function $u(x, y)$ is called harmonic if (u has continuous second-order partial derivatives) and

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Two standard abbreviations for this equation (Laplace's equation) are $\nabla^{2} u=0$ and $\Delta u=0$.

Analytic functions and harmonic functions

Theorem
If $f=u+i v$, and f is analytic, then u and v are harmonic.
Proof.
Differentiate the Cauchy-Riemann equations.

Harmonic conjugates

If $u(x, y)$ is a harmonic function, then a harmonic conjugate of u is a harmonic function $v(x, y)$ such that $u+i v$ is an analytic function.

Assignment

- Section II.3, Exercise 3
- Section II.5, Exercise 2

