Reminder

Exam 2 takes place on Thursday, October 26.
The material covered is Sections 2-7 of Chapter II.

Geometric interpretation of complex-linear transformations

- translation: $z \rightarrow z+b$ (where $b \in \mathbb{C}$)
- rotation: $z \rightarrow z e^{i t} \quad$ (where $t \in \mathbb{R}$)
- dilation: $z \rightarrow R z \quad($ where $R>0)$
- a link to an online visualization of transformations by Tim Brzezinski

Composing these functions generates a group of transformations, $z \rightarrow a z+b$, where a and b are complex numbers (and $a \neq 0$).

Linear approximation of analytic functions

$f(z)-f(0) \approx f^{\prime}(0) z$ when z is close to 0.
[More generally, $f(z)-f\left(z_{0}\right) \approx f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)$ when z is close to z_{0}.]

What does the transformation $z \mapsto f^{\prime}(0) z$ do geometrically? If $f^{\prime}(0)=r e^{i \theta}$, then the transformation stretches by a factor of r and rotates by angle θ.

Deduction: If two curves in the z plane cross at 0 at a certain angle, and $w=f(z)$, then the image curves in the w plane cross at $f(0)$ at the same angle.

This deduction depends on the derivative being nonzero; otherwise the angle θ is not well defined.
Analytic functions with nonzero derivative are called conformal mappings: the angles at which curves cross are preserved. Here is a link to a visualization tool for conformal mappings by Juan Carlos Ponce Campuzano.

The group of fractional linear transformations

(also called "linear fractional transformations" or "Möbius transformations")

Composing transformations of the form $z \mapsto a z+b$ with the inversion $z \mapsto 1 / z$ produces transformations of the form

$$
z \mapsto \frac{a z+b}{c z+d}
$$

where a, b, c, and d are complex numbers.
The derivative equals $\frac{a d-b c}{(c z+d)^{2}}$, so the restriction $a d-b c \neq 0$ is imposed to ensure invertibility of the transformation.

