Follow-up on Exercise V.3.1(i)
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Problem: Find the radius of convergence of Z z*
k=1
Solution via ratio test:
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since kllm (1 + %) = e. So the radius of convergence equals e.
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Second solution, using Stirling’s formula and root test

Theorem (Special case of Stirling's formula)
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(The general Stirling formula concerns an extension of the factorial
function to complex numbers, the Gamma function. See Sections
XIV.1 and 2 if you want to know more.)

Solution to the series problem by the root test:
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So the radius of convergence equals e (again).
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Exact formula for the geometric series
Write
Sp=14z4+2+---+2"

Then
2Sp=z+ 2%+ 42"+ "L,

so subtracting shows that
(1-2)S,=1-2z"".

Therefore )
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If |z] <1, then lim z™1 =0, so
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1+z+z2+z3+-~~:: when |z| < 1.



Cauchy’s formula implies Taylor's formula

Cauchy’s formula for f analytic on and inside unit circle C says:

f(z) = i fc flw) dw (z inside C)
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[geometric series] =

[Cauchy formula for f(”)] =

Conclusion: Taylor’s formula holds for analytic functions.



Beyond Taylor series
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The function ———= cannot be expanded in a series > cpz
z n=0

n
(because the function is not analytic at 0).
Nonetheless,
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A series in positive and negative powers of the variable is called a
Laurent series.
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Assignment (not to hand in)

Determine / f(z) dz for the following curve C:
c



