
Follow-up on Exercise V.3.1(i)
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Solution via ratio test:
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= e. So the radius of convergence equals e.



Second solution, using Stirling’s formula and root test

Theorem (Special case of Stirling’s formula)

lim
k→∞

k!

kke−k
√
2πk

= 1.

(The general Stirling formula concerns an extension of the factorial
function to complex numbers, the Gamma function. See Sections
XIV.1 and 2 if you want to know more.)

Solution to the series problem by the root test:
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So the radius of convergence equals e (again).



Exact formula for the geometric series

Write
Sn = 1 + z + z2 + · · ·+ zn.

Then
zSn = z + z2 + · · ·+ zn + zn+1,

so subtracting shows that
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If |z | < 1, then lim
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Cauchy’s formula implies Taylor’s formula

Cauchy’s formula for f analytic on and inside unit circle C says:
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Conclusion: Taylor’s formula holds for analytic functions.



Beyond Taylor series

The function
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cannot be expanded in a series
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(because the function is not analytic at 0).

Nonetheless,
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A series in positive and negative powers of the variable is called a
Laurent series.

Application:

∮
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Assignment (not to hand in)

Determine

∫
C
f (z) dz for the following curve C :


