Follow-up on Exercise V.3.1(i)

Problem: Find the radius of convergence of $\sum_{k=1}^{\infty} \frac{k!z^{k}}{k^{k}}$.
Solution via ratio test:

$$
\begin{array}{r}
\lim _{k \rightarrow \infty}\left|\frac{\frac{(k+1)!z^{k+1}}{(k+1)^{k+1}}}{\frac{k!z^{k}}{k^{k}}}\right|=\lim _{k \rightarrow \infty}\left|\frac{(k+1)!z^{k+1} k^{k}}{k!z^{k}(k+1)^{k+1}}\right| \\
=\lim _{k \rightarrow \infty}\left|\frac{(k+1) z k^{k}}{(k+1)^{k+1}}\right|=\lim _{k \rightarrow \infty}\left|\frac{z k^{k}}{(k+1)^{k}}\right|=\lim _{k \rightarrow \infty}|z|\left(\frac{k}{k+1}\right)^{k} \\
=|z| \lim _{k \rightarrow \infty}\left(\frac{1}{1+\frac{1}{k}}\right)^{k}=\frac{|z|}{e}
\end{array}
$$

since $\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}=e$. So the radius of convergence equals e.

Second solution, using Stirling's formula and root test

Theorem (Special case of Stirling's formula)

$$
\lim _{k \rightarrow \infty} \frac{k!}{k^{k} e^{-k} \sqrt{2 \pi k}}=1
$$

(The general Stirling formula concerns an extension of the factorial function to complex numbers, the Gamma function. See Sections XIV. 1 and 2 if you want to know more.)

Solution to the series problem by the root test:
$\lim _{k \rightarrow \infty}\left|\frac{k!}{k^{k}} z^{k}\right|^{1 / k}=\lim _{k \rightarrow \infty}\left|\frac{k!}{k^{k} e^{-k} \sqrt{2 \pi k}}\left(z^{k} e^{-k} \sqrt{2 \pi k}\right)\right|^{1 / k}=|z| e^{-1}$.
So the radius of convergence equals e (again).

Exact formula for the geometric series

Write

$$
S_{n}=1+z+z^{2}+\cdots+z^{n} .
$$

Then

$$
z S_{n}=z+z^{2}+\cdots+z^{n}+z^{n+1}
$$

so subtracting shows that

$$
(1-z) S_{n}=1-z^{n+1}
$$

Therefore

$$
S_{n}=\frac{1-z^{n+1}}{1-z}
$$

If $|z|<1$, then $\lim _{n \rightarrow \infty} z^{n+1}=0$, so

$$
1+z+z^{2}+z^{3}+\cdots=\frac{1}{1-z} \quad \text { when }|z|<1
$$

Cauchy's formula implies Taylor's formula

Cauchy's formula for f analytic on and inside unit circle C says:

$$
\begin{aligned}
\qquad f(z) & =\frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{w-z} d w \quad(z \text { inside } C) \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{w} \cdot \frac{1}{1-\frac{z}{w}} d w \\
\text { [geometric series] } & =\sum_{n=0}^{\infty} \frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{w} \cdot\left(\frac{z}{w}\right)^{n} d w \\
\text { [Cauchy formula for } \left.f^{(n)}\right] & =\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n} .
\end{aligned}
$$

Conclusion: Taylor's formula holds for analytic functions.

Beyond Taylor series

The function $\frac{\sin (z)}{z^{4}}$ cannot be expanded in a series $\sum_{n=0}^{\infty} c_{n} z^{n}$
(because the function is not analytic at 0).
Nonetheless,

$$
\frac{\sin (z)}{z^{4}}=\frac{z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots}{z^{4}}=\frac{1}{z^{3}}-\frac{1}{3!z}+\frac{z}{5!}-\cdots
$$

A series in positive and negative powers of the variable is called a Laurent series.

Application: $\oint_{|z|=2} \frac{\sin (z)}{z^{4}} d z=-\frac{2 \pi i}{3!}=-\frac{\pi i}{3}$

Assignment (not to hand in)

Determine $\int_{C} f(z) d z$ for the following curve C :

