Recap: Residues

The residue of $f(z)$ at the point z_{0} is the coefficient of $\frac{1}{z-z_{0}}$ in the Laurent series expansion of f in positive and negative powers of $\left(z-z_{0}\right)$ that converges in a punctured disk centered at z_{0}.

Example

If $f(z)=\exp \left(\frac{\cos (z)}{z^{2}}\right)$, then the residue of f at the point 0 equals 0 , since the function is even, so there is no $\frac{1}{z}$ term in the Laurent series!

More on residues at simple poles

- If $f(z)=\frac{g(z)}{z-z_{0}}$, where $g(z)$ is analytic at z_{0}, then the residue of $f(z)$ at z_{0} equals $g\left(z_{0}\right)$.
- If $f(z)=\frac{g(z)}{h(z)}$, where g and h are analytic, and $h\left(z_{0}\right)=0$ to first order, then the residue of $f(z)$ at z_{0} equals $\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}$.

Example

If $f(z)=\frac{e^{z}}{\sin (z)}$, then f has a singularity when $z=n \pi$ for each integer n, and

$$
\operatorname{Res}(f, n \pi)=\frac{e^{n \pi}}{\cos (n \pi)}=(-1)^{n} e^{n \pi}
$$

Recap: Residue theorem

Theorem
When f is analytic on and inside a simple closed curve C except for some isolated singularities, then $\oint_{C} f(z) d z$ equals $2 \pi i$ times the sum of the residues of f at the singular points inside C.

Example of applying the residue theorem

Compute $\int_{0}^{2 \pi} \frac{1}{5+3 \cos (\theta)} d \theta$.
Solution:

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{1}{5+3 \cos (\theta)} d \theta & =\int_{0}^{2 \pi} \frac{1}{5+\frac{3}{2}\left(e^{i \theta}+e^{-i \theta}\right)} d \theta \\
& \stackrel{\left(z=e^{i \theta}\right)}{=} \int_{|z|=1} \frac{1}{5+\frac{3}{2}\left(z+\frac{1}{z}\right)} \cdot \frac{d z}{i z} \\
& \stackrel{\text { (algebra) }}{=} \frac{2}{i} \int_{|z|=1} \frac{1}{3 z^{2}+10 z+3} d z \\
& \stackrel{\text { (factor) }}{=} \frac{2}{i} \int_{|z|=1} \frac{1}{(3 z+1)(z+3)} d z \\
& \stackrel{\text { (res. thm. })}{=} \frac{2}{i} \times 2 \pi i \times(\text { residue at }-1 / 3) \\
& =\frac{2}{i} \times 2 \pi i \times \frac{1}{8}=\frac{\pi}{2}
\end{aligned}
$$

Quiz

1. Evaluate the integral $\int_{|z|=409} \frac{z}{z^{2}+1} d z$.
2. Suppose $f(z)=\frac{\cos (\pi z)}{?}$ with an unknown denominator. If $\operatorname{Res}(f, 0)=1$ and $\operatorname{Res}(f, 1)=-1$, then what could the denominator of f be?
