Quiz due September 7

1. If z denotes the complex number $2-i$, then list the following real numbers in increasing order: $\operatorname{Im}(z),|z|, \operatorname{Re}\left(z^{2}\right)$.

Solution. By definition, $\operatorname{Im}(2-i)=-1$, and $|2-i|=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5}$. Moreover, $(2-i)^{2}=4-4 i+(-i)^{2}=4-4 i-1=3-4 i$, so $\operatorname{Re}\left(z^{2}\right)=3$. Evidently $-1<\sqrt{5}<3$, so the three numbers $\operatorname{Im}(z),|z|$, and $\operatorname{Re}\left(z^{2}\right)$ were already listed in increasing order in the statement of the problem!
Remark. This problem was supposed to be a routine exercise to confirm that you know the definitions. Notice that $\operatorname{Re}\left(z^{2}\right) \neq(\operatorname{Re} z)^{2}$: taking the real part and taking the square are operations that do not commute with each other!
2. If z denotes the complex number $1+i$, then compute $z+\frac{1}{z}$ and express the answer in the form $a+b i$.

Solution. By the standard trick,

$$
\frac{1}{z}=\frac{1}{1+i}=\frac{1}{1+i} \cdot \frac{1-i}{1-i}=\frac{1-i}{2} .
$$

Therefore

$$
z+\frac{1}{z}=1+i+\frac{1-i}{2}=\frac{3}{2}+\frac{1}{2} i .
$$

3. Find all values of the complex variable z for which $|z-1|=|z+1|$.

Solution. Method 1. Interpret the absolute value of a difference as a distance. The equation says that z represents a point having the same distance from the point 1 as from the point -1 . Deduce from geometry that the point z lies on the perpendicular bisector of the line segment joining 1 to -1 . In other words, the point z lies on the imaginary axis (that is, the y-axis).
Method 2. Square both sides and invoke Exercise 5 from Section I. 1 (which we talked about in class):

$$
|z|^{2}-2 \operatorname{Re}(z)+1=|z|^{2}+2 \operatorname{Re}(z)+1
$$

Move all the terms to the right-hand side to see that $0=4 \operatorname{Re}(z)$, so $\operatorname{Re}(z)=0$. In other words, the value of z is $y i$ for an arbitrary real number y.
Method 3. Replace z by $x+y i$:

$$
|x+y i-1|=|x+y i+1| \quad \text { or } \quad|(x-1)+y i|=|(x+1)+y i| .
$$

Square both sides to see that

$$
(x-1)^{2}+y^{2}=(x+1)^{2}+y^{2} .
$$

Cancel the y^{2} terms and expand the squares:

$$
x^{2}-2 x+1=x^{2}+2 x+1 .
$$

Move all the terms to one side to see that $x=0$. Therefore $z=y i$, where y is arbitrary.

