
Math 407 Complex Variables
Examination 2

Fall 2016

Instructions Please write your solutions on your own paper. These problems should be treated
as essay questions to answer in complete sentences.

1. Let  denote the boundary of the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1), oriented
counterclockwise as usual. (See the figure.)



1

Determine the value of the line integral ∫
Re(z) dz.

Solution. Method 1: Parametrize the path. The integral can be expressed as

∫

1

0
Re(t) dt + ∫

1

0
Re(1 + it) i dt + ∫

1

0
Re(1 − t + i) (−1) dt + ∫

1

0
Re(i(1 − t)) (−i) dt,

which simplifies to

∫

1

0
(t + i − (1 − t) + 0) dt, or ∫

1

0
(2t − 1 + i) dt, or i.

Method 2: Apply Green’s theorem.

∫
x dx + x i dy = ∬square

(

)(xi)
)x

− )x
)y

)

dx dy = ∬square
(i − 0) dx dy.

Since the area of the square is equal to 1, the answer is i.

2. Suppose v(x, y) = x3 − 3xy2 − 4y. Determine a function u(x, y) such that u + iv is an
analytic function.

Solution. Consistency check:

)2v
)x2

+ )2v
)y2

= 6x − 6x = 0.

Thus the function v is harmonic in the entire plane, which is a simply connected domain,
so there must exist a harmonic function u such that u + iv is harmonic.
To compute u, invoke the Cauchy–Riemann equations and integrate, as follows.

)u
)x

= )v
)y

= −6xy − 4.
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Therefore u(x, y) = −3x2y − 4x + g(y) for some function g. Consequently,

−3x2 + g′(y) = )u
)y

= −)v
)x

= −(3x2 − 3y2).

Comparing the left-hand side with the right-hand side reveals that g′(y) = 3y2, so g(y) = y3
(plus a constant). Therefore u(x, y) = −3x2y − 4x + y3 (plus a constant).
Remark. The underlying analytic function, u + iv, is iz3 − 4z.

3. Let  denote a simple closed curve, oriented counterclockwise, and suppose f (z) = z
z2 − 1

.

What are the possible values of the integral ∫
f (z) dz for different choices of the curve ?

Solution. The two singular points of the function f are 1 and −1. If the curve  encloses
neither of these singular points, then Cauchy’s theorem implies that the value of the integral
is 0. If the curve  encloses the point 1 but not the point −1, then Cauchy’s integral formula
implies that

∫
f (z) dz = ∫

z∕(z + 1)
z − 1

dz = 2�i ⋅ 1
1 + 1

= �i.

If the curve  encloses the point −1 but not the point 1, then Cauchy’s integral formula
implies that

∫
f (z) dz = ∫

z∕(z − 1)
z + 1

dz = 2�i ⋅ −1
−1 − 1

= �i.

If the curve  encloses both of the singular points, then the value of the integral is the sum of
the preceding two quantities: namely, 2�i. If one of the singular points lies on the curve  ,
then the integral is not well defined (being a divergent improper integral).
In summary, the possible values of the integral are 0, �i, and 2�i.
Remark. You could alternatively solve the problem by saying that

f (z) = z
z2 − 1

=
1∕2
z − 1

+
1∕2
z + 1

(partial fractions)

and then invoking Cauchy’s integral formula.

4. If n is a natural number, and

∫
|z|=1

cos(z)
zn

dz = 0,

then what can you deduce about the number n?

Solution. Method 1. Cauchy’s integral formula for derivatives implies that

∫
|z|=1

cos(z)
zn

dz = 2�i
(n − 1)!

⋅
dn−1

dzn−1
cos(z) ||

|z=0
.
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A derivative of cos(z) of even order equals ±cos(z), hence is nonzero when z = 0. On the
other hand, a derivative of cos(z) of odd order equals ± sin(z), hence is zero when z = 0.
Thus n − 1 must be odd, so n must be even.
Method 2. Expand cos(z) in a power series and exchange the order of summation and
integration to see that

∫
|z|=1

cos(z)
zn

dz =
∞
∑

k=0
∫
|z|=1

(−1)k

(2k)!
z2k−n dz.

The integral of an integer power of z around the unit circle is equal to zero except when
the exponent is −1 (in which case the integral is equal to 2�i). Therefore the preceding
expression is always equal to zero when n is even, for then 2k − n cannot be equal to −1.
But if n is odd, then there will be exactly one value of k for which 2k− n = −1, so the sum
will be nonzero.

5. Determine the radius of convergence of the power series
∞
∑

n=1

(

cos(in)
2n + 3n

)

zn.

Solution. Method 1. Since cos(z) is the average of eiz and e−iz, the quantity cos(in) is
the average of e−n and en. In particular, the quantity cos(in) is real and positive. Now
e−n < 1 < en, so

1
2
en < e−n + en

2
< en.

On the other hand,
3n < 2n + 3n < 2 ⋅ 3n.

Therefore
1
2
en

2 ⋅ 3n
<

cos(in)
2n + 3n

< en

3n
,

and
1

41∕n
⋅
e
3
<
(

cos(in)
2n + 3n

)1∕n

< e
3
.

Since limn→∞ 41∕n = 1, the squeeze theorem implies that

lim
n→∞

(

cos(in)
2n + 3n

)1∕n

= e
3
.

By the root test or by the Cauchy–Hadamard formula, the radius of convergence of the
given power series is equal to the reciprocal of this value: namely, to 3∕e.
Method 2. By the ratio test, the radius of convergence equals the limit

lim
n→∞

|

|

|

|

cos(in)
2n + 3n

⋅
2n+1 + 3n+1
cos(in + i)

|

|

|

|
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if the limit exists. Now

cos(in)
cos(in + i)

=
cos(in)

cos(in) cos(i) − sin(in) sin(i)
=

cosh(n)
cosh(n) cosh(1) + sinh(n) sinh(1)

.

Since cosh(n)∕ sinh(n) → 1 when n → ∞, the limit of the preceding expression equals

1
cosh(1) + sinh(1)

, or 1
e
.

On the other hand,

lim
n→∞

2n+1 + 3n+1
2n + 3n

= lim
n→∞

2(2
3
)n + 3

( 2
3
)n + 1

= 3,

since (2∕3)n → 0 when n → ∞. Multiplying the two limits together shows that the radius
of convergence of the series equals 3∕e.

6. Give an example of a function f (z) whose Taylor series
∞
∑

n=0

f (n)(4)
n!

(z − 4)n with center at

the point 4 has radius of convergence equal to 2.

Solution. There are many examples. A simple one is 1
z − 2

. This function is analytic in a
disk of radius 2 centered at 4 but is analytic in no larger disk with center 4, so the Taylor
series with center 4 must have radius of convergence equal to 2.
Alternatively, you could produce an example by starting with the geometric series

∞
∑

n=0

(z − 4
2

)n
,

which converges precisely when |z−4|∕2 < 1 and thus has radius of convergence equal to 2.
A geometric series sums to the first term divided by 1 minus the ratio, so the underlying
analytic function f (z) is

1
1 − z−4

2

, or 2
6 − z

.

Extra Credit

Lee and Orville conjecture that if f is an entire function such that |f (z)| ≤
√

|z| for every z,
then f must be a constant function.
Lee says, “The only plausible candidate for f (z) is z1∕2, but this function is not entire: the

derivative does not exist when z = 0. So I think that the conjecture must be true.”
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Orville says, “Certainly f cannot be a nonconstant polynomial, for then |f (z)| would grow
more or less like |z|n for some positive integer n, which is faster growth than |z|1∕2. But I am not
sure about general entire functions, that is, power series with infinite radius of convergence.”

What do you think? Can you prove Lee–Orville’s theorem, or can you find a counterexample?

Solution. The conjecture is a correct variation of Liouville’s theorem.
Method 1. The hypothesis implies, in particular, that |f (0)| ≤ 0, that is, f (0) = 0. Therefore

the power series expansion of f (z) is divisible by z, so there is an entire function g such that
f (z) = zg(z) for every z. The hypothesis implies moreover that

|g(z)| =
|f (z)|
|z|

≤
√

|z|
|z|

= 1
√

|z|
when z ≠ 0.

Therefore |g(z)| < 1 when |z| > 1. But g is a continuous function, so |g(z)| attains a finite
maximum on the closed disk where |z| ≤ 1. Accordingly, the entire function g is bounded in the
whole plane. By Liouville’s theorem, the function g reduces to a constant C .
Then f (z) = Cz. But now the hypothesis implies that |Cz| ≤

√

|z|, or |C|
√

|z| ≤ 1, and this
inequality cannot hold for large values of |z| unless C = 0. Therefore the function f not only is
constant but actually is the constant 0.

Method 2. Adapt the proof of Liouville’s theorem that I gave in class. If z0 is an arbitrary
point in the plane, and R > |z0|, then Cauchy’s integral formula implies that

f (z0) − f (0) =
1
2�i ∫

|w|=R

(

f (w)
w − z0

−
f (w)
w − 0

)

dw = 1
2�i ∫

|w|=R

z0f (w)
w(w − z0)

dw.

Parametrize the integration curve as Rei�, use that the absolute value of an integral is at most the
integral of the absolute value, and bring in the hypothesis to deduce that

|f (z0) − f (0)| ≤
1
2� ∫

2�

0

|z0|
√

R
R(R − |z0|)

Rd� =
|z0|

√

R
R − |z0|

.

LetR tend to infinity to conclude that |f (z0)−f (0)| ≤ 0, that is, f (z0) = f (0). Since the point z0
is arbitrary, the given function is equal to the constant value f (0).

Method 3. Adapt the proof of Liouville’s theorem given in the textbook. Cauchy’s formula
for the first derivative says that

f ′(z0) =
1
2�i ∫

|w|=R

f (w)
(w − z0)2

dw when R > |z0|.

Bound the absolute value of the integral by a strategy similar to the one used in Method 2:

|f ′(z0)| ≤
1
2� ∫

2�

0

√

R
(R − |z0|)2

Rd� = R3∕2

(R − |z0|)2
.

Holding z0 fixed, let R tend to infinity to conclude that f ′(z0) = 0. But the point z0 is arbitrary,
so the derivative f ′ is identically equal to zero. Therefore f is a constant function.

Remark. This problem is related to Exercise 4 on page 119 in Section IV.5 of the textbook.
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