1. Let γ denote the boundary of the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1), oriented counterclockwise as usual. (See the figure.)

Solution. Method 1: Parametrize the path. The integral can be expressed as

$$\int_0^1 \operatorname{Re}(t) \, dt + \int_0^1 \operatorname{Re}(1+it) \, i \, dt + \int_0^1 \operatorname{Re}(1-t+i) \, (-1) \, dt + \int_0^1 \operatorname{Re}(i(1-t)) \, (-i) \, dt,$$

which simplifies to

$$\int_0^1 (t+i-(1-t)+0) dt, \quad \text{or} \quad \int_0^1 (2t-1+i) dt, \quad \text{or} \quad i.$$

Method 2: Apply Green's theorem.

$$\int_{\gamma} x \, dx + x \, i \, dy = \iint_{\text{square}} \left(\frac{\partial(xi)}{\partial x} - \frac{\partial x}{\partial y} \right) \, dx \, dy = \iint_{\text{square}} (i - 0) \, dx \, dy.$$

Since the area of the square is equal to 1, the answer is *i*.

2. Suppose $v(x, y) = x^3 - 3xy^2 - 4y$. Determine a function u(x, y) such that u + iv is an analytic function.

Solution. Consistency check:

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 6x - 6x = 0.$$

Thus the function v is harmonic in the entire plane, which is a simply connected domain, so there must exist a harmonic function u such that u + iv is harmonic.

To compute *u*, invoke the Cauchy–Riemann equations and integrate, as follows.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = -6xy - 4.$$

Therefore $u(x, y) = -3x^2y - 4x + g(y)$ for some function g. Consequently,

$$-3x^{2} + g'(y) = \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = -(3x^{2} - 3y^{2}).$$

Comparing the left-hand side with the right-hand side reveals that $g'(y) = 3y^2$, so $g(y) = y^3$ (plus a constant). Therefore $u(x, y) = -3x^2y - 4x + y^3$ (plus a constant).

Remark. The underlying analytic function, u + iv, is $iz^3 - 4z$.

3. Let γ denote a simple closed curve, oriented counterclockwise, and suppose $f(z) = \frac{z}{z^2 - 1}$. What are the possible values of the integral $\int_{\gamma} f(z) dz$ for different choices of the curve γ ?

Solution. The two singular points of the function f are 1 and -1. If the curve γ encloses neither of these singular points, then Cauchy's theorem implies that the value of the integral is 0. If the curve γ encloses the point 1 but not the point -1, then Cauchy's integral formula implies that

$$\int_{\gamma} f(z) dz = \int_{\gamma} \frac{z/(z+1)}{z-1} dz = 2\pi i \cdot \frac{1}{1+1} = \pi i.$$

If the curve γ encloses the point -1 but not the point 1, then Cauchy's integral formula implies that

$$\int_{\gamma} f(z) dz = \int_{\gamma} \frac{z/(z-1)}{z+1} dz = 2\pi i \cdot \frac{-1}{-1-1} = \pi i.$$

If the curve γ encloses both of the singular points, then the value of the integral is the sum of the preceding two quantities: namely, $2\pi i$. If one of the singular points lies *on* the curve γ , then the integral is not well defined (being a divergent improper integral).

In summary, the possible values of the integral are 0, πi , and $2\pi i$.

Remark. You could alternatively solve the problem by saying that

$$f(z) = \frac{z}{z^2 - 1} = \frac{1/2}{z - 1} + \frac{1/2}{z + 1}$$
 (partial fractions)

and then invoking Cauchy's integral formula.

4. If *n* is a natural number, and

$$\int_{|z|=1} \frac{\cos(z)}{z^n} \, dz = 0,$$

then what can you deduce about the number n?

Solution. Method 1. Cauchy's integral formula for derivatives implies that

$$\int_{|z|=1} \frac{\cos(z)}{z^n} dz = \frac{2\pi i}{(n-1)!} \cdot \frac{d^{n-1}}{dz^{n-1}} \cos(z) \Big|_{z=0}$$

A derivative of cos(z) of even order equals $\pm cos(z)$, hence is nonzero when z = 0. On the other hand, a derivative of cos(z) of odd order equals $\pm sin(z)$, hence is zero when z = 0. Thus n - 1 must be odd, so n must be even.

Method 2. Expand cos(z) in a power series and exchange the order of summation and integration to see that

$$\int_{|z|=1} \frac{\cos(z)}{z^n} \, dz = \sum_{k=0}^{\infty} \int_{|z|=1} \frac{(-1)^k}{(2k)!} z^{2k-n} \, dz.$$

The integral of an integer power of z around the unit circle is equal to zero except when the exponent is -1 (in which case the integral is equal to $2\pi i$). Therefore the preceding expression is always equal to zero when n is even, for then 2k - n cannot be equal to -1. But if n is odd, then there will be exactly one value of k for which 2k - n = -1, so the sum will be nonzero.

5. Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} \left(\frac{\cos(in)}{2^n + 3^n} \right) z^n.$

Solution. Method 1. Since cos(z) is the average of e^{iz} and e^{-iz} , the quantity cos(in) is the average of e^{-n} and e^{n} . In particular, the quantity cos(in) is real and positive. Now $e^{-n} < 1 < e^{n}$, so

$$\frac{1}{2}e^n < \frac{e^{-n} + e^n}{2} < e^n.$$

On the other hand,

$$3^n < 2^n + 3^n < 2 \cdot 3^n.$$

Therefore

$$\frac{\frac{1}{2}e^n}{2\cdot 3^n} < \frac{\cos(in)}{2^n + 3^n} < \frac{e^n}{3^n},$$

and

$$\frac{1}{4^{1/n}} \cdot \frac{e}{3} < \left(\frac{\cos(in)}{2^n + 3^n}\right)^{1/n} < \frac{e}{3}.$$

Since $\lim_{n\to\infty} 4^{1/n} = 1$, the squeeze theorem implies that

$$\lim_{n\to\infty}\left(\frac{\cos(in)}{2^n+3^n}\right)^{1/n}=\frac{e}{3}.$$

By the root test or by the Cauchy–Hadamard formula, the radius of convergence of the given power series is equal to the reciprocal of this value: namely, to 3/e.

Method 2. By the ratio test, the radius of convergence equals the limit

$$\lim_{n \to \infty} \left| \frac{\cos(in)}{2^n + 3^n} \cdot \frac{2^{n+1} + 3^{n+1}}{\cos(in+i)} \right|$$

if the limit exists. Now

 $\frac{\cos(in)}{\cos(in+i)} = \frac{\cos(in)}{\cos(in)\cos(i) - \sin(in)\sin(i)} = \frac{\cosh(n)}{\cosh(n)\cosh(1) + \sinh(n)\sinh(1)}.$

Since $\cosh(n)/\sinh(n) \to 1$ when $n \to \infty$, the limit of the preceding expression equals

$$\frac{1}{\cosh(1) + \sinh(1)}$$
, or $\frac{1}{e}$.

On the other hand,

$$\lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} = \lim_{n \to \infty} \frac{2(\frac{2}{3})^n + 3}{(\frac{2}{3})^n + 1} = 3,$$

since $(2/3)^n \to 0$ when $n \to \infty$. Multiplying the two limits together shows that the radius of convergence of the series equals 3/e.

6. Give an example of a function f(z) whose Taylor series $\sum_{n=0}^{\infty} \frac{f^{(n)}(4)}{n!}(z-4)^n$ with center at the point 4 has radius of convergence equal to 2.

Solution. There are many examples. A simple one is $\frac{1}{z-2}$. This function is analytic in a disk of radius 2 centered at 4 but is analytic in no larger disk with center 4, so the Taylor series with center 4 must have radius of convergence equal to 2.

Alternatively, you could produce an example by starting with the geometric series

$$\sum_{n=0}^{\infty} \left(\frac{z-4}{2}\right)^n,$$

which converges precisely when |z-4|/2 < 1 and thus has radius of convergence equal to 2. A geometric series sums to the first term divided by 1 minus the ratio, so the underlying analytic function f(z) is

$$\frac{1}{1-\frac{z-4}{2}}$$
, or $\frac{2}{6-z}$.

Extra Credit

Lee and Orville conjecture that if f is an entire function such that $|f(z)| \le \sqrt{|z|}$ for every z, then f must be a constant function.

Lee says, "The only plausible candidate for f(z) is $z^{1/2}$, but this function is not entire: the derivative does not exist when z = 0. So I think that the conjecture must be true."

Orville says, "Certainly f cannot be a nonconstant *polynomial*, for then |f(z)| would grow more or less like $|z|^n$ for some positive integer n, which is faster growth than $|z|^{1/2}$. But I am not sure about general entire functions, that is, power series with infinite radius of convergence."

What do you think? Can you prove Lee–Orville's theorem, or can you find a counterexample?

Solution. The conjecture is a correct variation of Liouville's theorem.

Method 1. The hypothesis implies, in particular, that $|f(0)| \le 0$, that is, f(0) = 0. Therefore the power series expansion of f(z) is divisible by z, so there is an entire function g such that f(z) = zg(z) for every z. The hypothesis implies moreover that

$$|g(z)| = \frac{|f(z)|}{|z|} \le \frac{\sqrt{|z|}}{|z|} = \frac{1}{\sqrt{|z|}}$$
 when $z \ne 0$.

Therefore |g(z)| < 1 when |z| > 1. But g is a continuous function, so |g(z)| attains a finite maximum on the closed disk where $|z| \le 1$. Accordingly, the entire function g is bounded in the whole plane. By Liouville's theorem, the function g reduces to a constant C.

Then f(z) = Cz. But now the hypothesis implies that $|Cz| \le \sqrt{|z|}$, or $|C| \sqrt{|z|} \le 1$, and this inequality cannot hold for large values of |z| unless C = 0. Therefore the function f not only is constant but actually is the constant 0.

Method 2. Adapt the proof of Liouville's theorem that I gave in class. If z_0 is an arbitrary point in the plane, and $R > |z_0|$, then Cauchy's integral formula implies that

$$f(z_0) - f(0) = \frac{1}{2\pi i} \int_{|w|=R} \left(\frac{f(w)}{w - z_0} - \frac{f(w)}{w - 0} \right) \, dw = \frac{1}{2\pi i} \int_{|w|=R} \frac{z_0 f(w)}{w(w - z_0)} \, dw.$$

Parametrize the integration curve as $Re^{i\theta}$, use that the absolute value of an integral is at most the integral of the absolute value, and bring in the hypothesis to deduce that

$$|f(z_0) - f(0)| \le \frac{1}{2\pi} \int_0^{2\pi} \frac{|z_0|\sqrt{R}}{R(R - |z_0|)} \, R \, d\theta = \frac{|z_0|\sqrt{R}}{R - |z_0|}.$$

Let *R* tend to infinity to conclude that $|f(z_0) - f(0)| \le 0$, that is, $f(z_0) = f(0)$. Since the point z_0 is arbitrary, the given function is equal to the constant value f(0).

Method 3. Adapt the proof of Liouville's theorem given in the textbook. Cauchy's formula for the first derivative says that

$$f'(z_0) = \frac{1}{2\pi i} \int_{|w|=R} \frac{f(w)}{(w-z_0)^2} dw \quad \text{when } R > |z_0|.$$

Bound the absolute value of the integral by a strategy similar to the one used in Method 2:

$$|f'(z_0)| \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{\sqrt{R}}{(R-|z_0|)^2} \, R \, d\theta = \frac{R^{3/2}}{(R-|z_0|)^2}.$$

Holding z_0 fixed, let *R* tend to infinity to conclude that $f'(z_0) = 0$. But the point z_0 is arbitrary, so the derivative f' is identically equal to zero. Therefore f is a constant function.

Remark. This problem is related to Exercise 4 on page 119 in Section IV.5 of the textbook.