Examination 2

Instructions Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

1. Let γ denote the boundary of the square with vertices $(0,0),(1,0),(1,1)$, and $(0,1)$, oriented counterclockwise as usual. (See the figure.)

Determine the value of the line integral $\int_{\gamma} \operatorname{Re}(z) d z$.
Solution. Method 1: Parametrize the path. The integral can be expressed as

$$
\int_{0}^{1} \operatorname{Re}(t) d t+\int_{0}^{1} \operatorname{Re}(1+i t) i d t+\int_{0}^{1} \operatorname{Re}(1-t+i)(-1) d t+\int_{0}^{1} \operatorname{Re}(i(1-t))(-i) d t
$$

which simplifies to

$$
\int_{0}^{1}(t+i-(1-t)+0) d t, \quad \text { or } \quad \int_{0}^{1}(2 t-1+i) d t, \quad \text { or } \quad i .
$$

Method 2: Apply Green's theorem.

$$
\int_{\gamma} x d x+x i d y=\iint_{\text {square }}\left(\frac{\partial(x i)}{\partial x}-\frac{\partial x}{\partial y}\right) d x d y=\iint_{\text {square }}(i-0) d x d y .
$$

Since the area of the square is equal to 1 , the answer is i.
2. Suppose $v(x, y)=x^{3}-3 x y^{2}-4 y$. Determine a function $u(x, y)$ such that $u+i v$ is an analytic function.

Solution. Consistency check:

$$
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=6 x-6 x=0 .
$$

Thus the function v is harmonic in the entire plane, which is a simply connected domain, so there must exist a harmonic function u such that $u+i v$ is harmonic.
To compute u, invoke the Cauchy-Riemann equations and integrate, as follows.

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=-6 x y-4
$$

Examination 2

Therefore $u(x, y)=-3 x^{2} y-4 x+g(y)$ for some function g. Consequently,

$$
-3 x^{2}+g^{\prime}(y)=\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=-\left(3 x^{2}-3 y^{2}\right) .
$$

Comparing the left-hand side with the right-hand side reveals that $g^{\prime}(y)=3 y^{2}$, so $g(y)=y^{3}$ (plus a constant). Therefore $u(x, y)=-3 x^{2} y-4 x+y^{3}$ (plus a constant).
Remark. The underlying analytic function, $u+i v$, is $i z^{3}-4 z$.
3. Let γ denote a simple closed curve, oriented counterclockwise, and suppose $f(z)=\frac{z}{z^{2}-1}$. What are the possible values of the integral $\int_{\gamma} f(z) d z$ for different choices of the curve γ ?

Solution. The two singular points of the function f are 1 and -1 . If the curve γ encloses neither of these singular points, then Cauchy's theorem implies that the value of the integral is 0 . If the curve γ encloses the point 1 but not the point -1 , then Cauchy's integral formula implies that

$$
\int_{\gamma} f(z) d z=\int_{\gamma} \frac{z /(z+1)}{z-1} d z=2 \pi i \cdot \frac{1}{1+1}=\pi i
$$

If the curve γ encloses the point -1 but not the point 1 , then Cauchy's integral formula implies that

$$
\int_{\gamma} f(z) d z=\int_{\gamma} \frac{z /(z-1)}{z+1} d z=2 \pi i \cdot \frac{-1}{-1-1}=\pi i .
$$

If the curve γ encloses both of the singular points, then the value of the integral is the sum of the preceding two quantities: namely, $2 \pi i$. If one of the singular points lies on the curve γ, then the integral is not well defined (being a divergent improper integral).
In summary, the possible values of the integral are $0, \pi i$, and $2 \pi i$.
Remark. You could alternatively solve the problem by saying that

$$
f(z)=\frac{z}{z^{2}-1}=\frac{1 / 2}{z-1}+\frac{1 / 2}{z+1} \quad(\text { partial fractions })
$$

and then invoking Cauchy's integral formula.
4. If n is a natural number, and

$$
\int_{|z|=1} \frac{\cos (z)}{z^{n}} d z=0
$$

then what can you deduce about the number n ?
Solution. Method 1. Cauchy's integral formula for derivatives implies that

$$
\int_{|z|=1} \frac{\cos (z)}{z^{n}} d z=\left.\frac{2 \pi i}{(n-1)!} \cdot \frac{d^{n-1}}{d z^{n-1}} \cos (z)\right|_{z=0}
$$

A derivative of $\cos (z)$ of even order equals $\pm \cos (z)$, hence is nonzero when $z=0$. On the other hand, a derivative of $\cos (z)$ of odd order equals $\pm \sin (z)$, hence is zero when $z=0$. Thus $n-1$ must be odd, so n must be even.

Method 2. Expand $\cos (z)$ in a power series and exchange the order of summation and integration to see that

$$
\int_{|z|=1} \frac{\cos (z)}{z^{n}} d z=\sum_{k=0}^{\infty} \int_{|z|=1} \frac{(-1)^{k}}{(2 k)!} z^{2 k-n} d z
$$

The integral of an integer power of z around the unit circle is equal to zero except when the exponent is -1 (in which case the integral is equal to $2 \pi i$). Therefore the preceding expression is always equal to zero when n is even, for then $2 k-n$ cannot be equal to -1 . But if n is odd, then there will be exactly one value of k for which $2 k-n=-1$, so the sum will be nonzero.
5. Determine the radius of convergence of the power series $\sum_{n=1}^{\infty}\left(\frac{\cos (\text { in })}{2^{n}+3^{n}}\right) z^{n}$.

Solution. Method 1. Since $\cos (z)$ is the average of $e^{i z}$ and $e^{-i z}$, the quantity $\cos (i n)$ is the average of e^{-n} and e^{n}. In particular, the quantity $\cos (i n)$ is real and positive. Now $e^{-n}<1<e^{n}$, so

$$
\frac{1}{2} e^{n}<\frac{e^{-n}+e^{n}}{2}<e^{n}
$$

On the other hand,

$$
3^{n}<2^{n}+3^{n}<2 \cdot 3^{n}
$$

Therefore

$$
\frac{\frac{1}{2} e^{n}}{2 \cdot 3^{n}}<\frac{\cos (i n)}{2^{n}+3^{n}}<\frac{e^{n}}{3^{n}}
$$

and

$$
\frac{1}{4^{1 / n}} \cdot \frac{e}{3}<\left(\frac{\cos (i n)}{2^{n}+3^{n}}\right)^{1 / n}<\frac{e}{3}
$$

Since $\lim _{n \rightarrow \infty} 4^{1 / n}=1$, the squeeze theorem implies that

$$
\lim _{n \rightarrow \infty}\left(\frac{\cos (i n)}{2^{n}+3^{n}}\right)^{1 / n}=\frac{e}{3} .
$$

By the root test or by the Cauchy-Hadamard formula, the radius of convergence of the given power series is equal to the reciprocal of this value: namely, to 3/e.
Method 2. By the ratio test, the radius of convergence equals the limit

$$
\lim _{n \rightarrow \infty}\left|\frac{\cos (i n)}{2^{n}+3^{n}} \cdot \frac{2^{n+1}+3^{n+1}}{\cos (i n+i)}\right|
$$

if the limit exists. Now

$$
\frac{\cos (\text { in })}{\cos (i n+i)}=\frac{\cos (i n)}{\cos (\text { in }) \cos (i)-\sin (\text { in }) \sin (i)}=\frac{\cosh (n)}{\cosh (n) \cosh (1)+\sinh (n) \sinh (1)}
$$

Since $\cosh (n) / \sinh (n) \rightarrow 1$ when $n \rightarrow \infty$, the limit of the preceding expression equals

$$
\frac{1}{\cosh (1)+\sinh (1)}, \quad \text { or } \quad \frac{1}{e}
$$

On the other hand,

$$
\lim _{n \rightarrow \infty} \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}}=\lim _{n \rightarrow \infty} \frac{2\left(\frac{2}{3}\right)^{n}+3}{\left(\frac{2}{3}\right)^{n}+1}=3
$$

since $(2 / 3)^{n} \rightarrow 0$ when $n \rightarrow \infty$. Multiplying the two limits together shows that the radius of convergence of the series equals $3 / e$.
6. Give an example of a function $f(z)$ whose Taylor series $\sum_{n=0}^{\infty} \frac{f^{(n)}(4)}{n!}(z-4)^{n}$ with center at the point 4 has radius of convergence equal to 2 .

Solution. There are many examples. A simple one is $\frac{1}{z-2}$. This function is analytic in a disk of radius 2 centered at 4 but is analytic in no larger disk with center 4, so the Taylor series with center 4 must have radius of convergence equal to 2 .
Alternatively, you could produce an example by starting with the geometric series

$$
\sum_{n=0}^{\infty}\left(\frac{z-4}{2}\right)^{n}
$$

which converges precisely when $|z-4| / 2<1$ and thus has radius of convergence equal to 2 . A geometric series sums to the first term divided by 1 minus the ratio, so the underlying analytic function $f(z)$ is

$$
\frac{1}{1-\frac{z-4}{2}}, \quad \text { or } \quad \frac{2}{6-z}
$$

Extra Credit

Lee and Orville conjecture that if f is an entire function such that $|f(z)| \leq \sqrt{|z|}$ for every z, then f must be a constant function.

Lee says, "The only plausible candidate for $f(z)$ is $z^{1 / 2}$, but this function is not entire: the derivative does not exist when $z=0$. So I think that the conjecture must be true."

Examination 2

Orville says, "Certainly f cannot be a nonconstant polynomial, for then $|f(z)|$ would grow more or less like $|z|^{n}$ for some positive integer n, which is faster growth than $|z|^{1 / 2}$. But I am not sure about general entire functions, that is, power series with infinite radius of convergence."

What do you think? Can you prove Lee-Orville's theorem, or can you find a counterexample?
Solution. The conjecture is a correct variation of Liouville's theorem.
Method 1. The hypothesis implies, in particular, that $|f(0)| \leq 0$, that is, $f(0)=0$. Therefore the power series expansion of $f(z)$ is divisible by z, so there is an entire function g such that $f(z)=z g(z)$ for every z. The hypothesis implies moreover that

$$
|g(z)|=\frac{|f(z)|}{|z|} \leq \frac{\sqrt{|z|}}{|z|}=\frac{1}{\sqrt{|z|}} \quad \text { when } z \neq 0
$$

Therefore $|g(z)|<1$ when $|z|>1$. But g is a continuous function, so $|g(z)|$ attains a finite maximum on the closed disk where $|z| \leq 1$. Accordingly, the entire function g is bounded in the whole plane. By Liouville's theorem, the function g reduces to a constant C.

Then $f(z)=C z$. But now the hypothesis implies that $|C z| \leq \sqrt{|z|}$, or $|C| \sqrt{|z|} \leq 1$, and this inequality cannot hold for large values of $|z|$ unless $C=0$. Therefore the function f not only is constant but actually is the constant 0 .

Method 2. Adapt the proof of Liouville's theorem that I gave in class. If z_{0} is an arbitrary point in the plane, and $R>\left|z_{0}\right|$, then Cauchy's integral formula implies that

$$
f\left(z_{0}\right)-f(0)=\frac{1}{2 \pi i} \int_{|w|=R}\left(\frac{f(w)}{w-z_{0}}-\frac{f(w)}{w-0}\right) d w=\frac{1}{2 \pi i} \int_{|w|=R} \frac{z_{0} f(w)}{w\left(w-z_{0}\right)} d w
$$

Parametrize the integration curve as $R e^{i \theta}$, use that the absolute value of an integral is at most the integral of the absolute value, and bring in the hypothesis to deduce that

$$
\left|f\left(z_{0}\right)-f(0)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left|z_{0}\right| \sqrt{R}}{R\left(R-\left|z_{0}\right|\right)} R d \theta=\frac{\left|z_{0}\right| \sqrt{R}}{R-\left|z_{0}\right|}
$$

Let R tend to infinity to conclude that $\left|f\left(z_{0}\right)-f(0)\right| \leq 0$, that is, $f\left(z_{0}\right)=f(0)$. Since the point z_{0} is arbitrary, the given function is equal to the constant value $f(0)$.

Method 3. Adapt the proof of Liouville's theorem given in the textbook. Cauchy's formula for the first derivative says that

$$
f^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{|w|=R} \frac{f(w)}{\left(w-z_{0}\right)^{2}} d w \quad \text { when } R>\left|z_{0}\right| .
$$

Bound the absolute value of the integral by a strategy similar to the one used in Method 2:

$$
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\sqrt{R}}{\left(R-\left|z_{0}\right|\right)^{2}} R d \theta=\frac{R^{3 / 2}}{\left(R-\left|z_{0}\right|\right)^{2}}
$$

Holding z_{0} fixed, let R tend to infinity to conclude that $f^{\prime}\left(z_{0}\right)=0$. But the point z_{0} is arbitrary, so the derivative f^{\prime} is identically equal to zero. Therefore f is a constant function.

Remark. This problem is related to Exercise 4 on page 119 in Section IV. 5 of the textbook.

