Comments on reading and writing proofs

A student wrote the following.

Theorem 1. If $x<y$, then $x^{2}<y^{2}$.
Proof. Multiplying by $x, x<y \Rightarrow x \cdot x<y \cdot x$. Multiplying by $y, x<y$ $\Rightarrow x \cdot y<y \cdot y$. But by commutativity of multiplication, $y \cdot x=x \cdot y$. By transitivity of $<, x \cdot x<y \cdot y$. QED

The student had the right idea, but the presentation has some mistakes. The most serious error is that the theorem is false. For example, if $x=-5$ and $y=1$, then $x<y$, but x^{2} is not less than y^{2}. The theorem would be valid, however, under the additional hypothesis that x is positive.

Some less serious errors are mistakes in style. For example, it is confusing to separate different formulas by just a comma; there ought to be words between formulas to help the reader see where one formula starts and the other ends. Also, symbols like \Rightarrow and $<$ belong in formulas, but not in the middle of sentences as abbreviations for words.

The introductory phrase "Multiplying by x " is a grammatical error known as a "dangling participle". Who or what is doing the multiplying?

Here is a revision of the student's work. Notice that the revised exposition consists mostly of words, with only a few formulas.

Theorem 2. If x and y are positive real numbers, and $x<y$, then $x^{2}<y^{2}$.
Proof. It is valid to multiply both sides of an inequality by a positive real number. Apply this principle twice to the hypothesis that $x<y$. Multiply first by x and then by y to deduce that

$$
x^{2}<y x \quad \text { and } \quad x y<y^{2} .
$$

The commutative law for multiplication says that $y x=x y$, so the transitive property of inequality implies the desired conclusion that $x^{2}<y^{2}$.

