Math 409-502

Harold P. Boas boas@tamu.edu Announcement

Math Club Meeting Monday, October 18 (today) 6:00 PM, Blocker 156

Undergraduate speakers: Dakota Blair, "Oscillating Patterns in Langtons Ant" Ryan Westbrook, "New Results in Wavelet Set Theory"

FREE FOOD

Math 409-502

October 18, 2004 — slide #2

Limits of functions

Definition

 $\lim_{x \to a} f(x) = L \text{ means that for every } \epsilon > 0 \text{ there exists a } \delta > 0 \text{ such that } |f(x) - L| < \epsilon \text{ when } 0 < |x - a| < \delta.$ (Note that *f*(*a*) need not be defined.)

Example: Prove that $\lim_{x\to 1} \frac{x+3}{x+1} = 2$ **.**

Suppose $\epsilon > 0$ is given. Set $\delta = \min(\epsilon, 1)$. If $|x - 1| < \delta$, then in particular x > 0, so $\frac{1}{x+1} < 1$. Hence $|x - 1| < \delta$ implies $\left|\frac{x+3}{x+1} - 2\right| = \frac{|-x+1|}{x+1} \le |x - 1| < \delta \le \epsilon$. Thus $\frac{x+3}{x+1} \approx 2$ when $x \approx 1$, as required. Math 409-502 October 18, 2004 — slide #3

Connection with sequences

 $\lim_{x\to a} f(x) = L$ if and only if for every sequence $\{x_n\}$ such that $x_n \to a$ [but $x_n \neq a$] we have $f(x_n) \to L$.

Consequently, all our theorems for limits of sequences carry over to limits of functions.

Example: $\lim_{x\to 0} x \sin(1/x) = 0$

Proof: since

 $-|x| \le x \sin(1/x) \le |x| \qquad \text{(for } x \ne 0\text{)}$

the result follows from the squeeze theorem.

Math 409-502

October 18, 2004 — slide #4

Continuity

A function *f* is *continuous* at a point *a* if $\lim_{x\to a} f(x) = f(a)$.

The formal definition: For every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(a)| < \epsilon$ when $|x - a| < \delta$.

The same proof we did to show that $\lim_{x\to 1} \frac{x+3}{x+1} = 2$ proves that the function $f(x) = \frac{x+3}{x+1}$ is continuous at x = 1.

Math 409-502

October 18, 2004 — slide #5

Homework

- 1. Read sections 11.1 and 11.2, pages 151–158.
- 2. Do Exercises 11.1/5 and 11.2/1 on page 167.

Math 409-502

October 18, 2004 — slide #6