Math 409-502

Harold P. Boas
boas@tamu.edu

Announcement

Math Club Meeting
Monday, October 18 (today)
6:00 PM, Blocker 156

Undergraduate speakers:
Dakota Blair, "Oscillating Patterns in Langtons Ant"
Ryan Westbrook, "New Results in Wavelet Set Theory"

FREE FOOD

Limits of functions

Definition

$\lim _{x \rightarrow a} f(x)=L$ means that for every $\epsilon>0$ there exists a $\delta>0$ such that $|f(x)-L|<\epsilon$ when $0<|x-a|<\delta$.
(Note that $f(a)$ need not be defined.)

Example: Prove that $\lim _{x \rightarrow 1} \frac{x+3}{x+1}=2$.

Suppose $\epsilon>0$ is given. Set $\delta=\min (\epsilon, 1)$. If $|x-1|<\delta$, then in particular $x>0$, so $\frac{1}{x+1}<1$. Hence $|x-1|<\delta$ implies
$\left|\frac{x+3}{x+1}-2\right|=\frac{|-x+1|}{x+1} \leq|x-1|<\delta \leq \epsilon$.
Thus $\frac{x+3}{x+1} \underset{\epsilon}{\approx} 2$ when $x \approx 1$, as required.

Connection with sequences

$\lim _{x \rightarrow a} f(x)=L$ if and only if for every sequence $\left\{x_{n}\right\}$ such that $x_{n} \rightarrow a\left[\right.$ but $x_{n} \neq a$] we have $f\left(x_{n}\right) \rightarrow L$.

Consequently, all our theorems for limits of sequences carry over to limits of functions.

Example: $\lim _{x \rightarrow 0} x \sin (1 / x)=0$

Proof: since

$$
-|x| \leq x \sin (1 / x) \leq|x| \quad(\text { for } x \neq 0)
$$

the result follows from the squeeze theorem.

Continuity

A function f is continuous at a point a if $\lim _{x \rightarrow a} f(x)=f(a)$.
The formal definition: For every $\epsilon>0$, there exists $\delta>0$ such that $|f(x)-f(a)|<\epsilon$ when $|x-a|<\delta$.

The same proof we did to show that $\lim _{x \rightarrow 1} \frac{x+3}{x+1}=2$ proves that the function $f(x)=\frac{x+3}{x+1}$ is continuous at $x=1$.

Homework

1. Read sections 11.1 and 11.2 , pages $151-158$.
2. Do Exercises 11.1/5 and 11.2/1 on page 167 .
