
Math 409 Final Exam

Advanced Calculus I
Spring 2010

A Definitions and examples

1. Continuity

(a) State the definition of “f : (0, 1) → R is continuous”.

Solution. See Definition 3.19 on page 83.

(b) Give a concrete example of a continuous function.

Solution. Some examples are constant functions, polynomials,
the sine function, the cosine function, and the exponential func-
tion.

(c) Give a concrete example of a function that is not continuous.

Solution. Step functions and the Dirichlet function are possible
examples.

2. Differentiability

(a) State the definition of “f : (0, 1) → R is differentiable”.

Solution. See Definitions 4.1 and 4.6 on pages 98 and 102.

(b) Give a concrete example of a function that is differentiable.

Solution. Some examples are constant functions, polynomials,
the sine function, the cosine function, and the exponential func-
tion.

(c) Give a concrete example of a function that is not differentiable.

Solution. Some examples are the absolute-value function |x| on
the interval (−1, 1), the shifted function |x − 1

2
| on the interval

(0, 1), and the discontinuous functions from the previous problem.

3. Integrability

(a) State the definition of “f : [0, 1] → R is Riemann integrable”.

Solution. See Definition 5.9 on page 134.
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(b) Give a concrete example of a function that is Riemann integrable.

Solution. Constant functions, polynomials, the sine function, the
cosine function, and the exponential function are some examples
of integrable functions on bounded intervals.

(c) Give a concrete example of a function that is not Riemann inte-
grable.

Solution. One example is the Dirichlet function. Another exam-
ple is any unbounded function, say{

1/x, x 6= 0

1, x = 0.

B Theorems and proofs

Here are some of the important theorems from the course:

• Bolzano–Weierstrass theorem

• Intermediate-value theorem

• Mean-value theorem

• Taylor’s formula

• l’Hôpital’s rule

• Fundamental theorem of calculus

4. Give careful statements of three of the indicated theorems.
(For a theorem that has several versions, state any one version.)

5. Prove one of the indicated theorems.
(For a theorem that has several versions, prove any one version.)

Solution. The indicated theorems (with proofs) are in the textbook
as Theorem 2.26 on page 56, Theorem 3.29 on page 87, Theorem 4.15
on page 111, Theorem 4.24 on page 117, Theorem 4.27 on page 120,
and Theorem 5.28 on page 152.
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C Problems

Solve two of the following four problems.

6. Prove that
n∑

k=1

k3 =
n2(n+ 1)2

4
for every natural number n.

Solution. The proof is by induction on n. When n = 1, both sides
equal 1, so the basis step of the induction argument is valid.

Suppose, then, that the equation is known to hold for a certain natural
number n. It follows by adding (n+ 1)3 to both sides that

n+1∑
k=1

k3 = (n+ 1)3 +
n2(n+ 1)2

4
.

Routine algebra shows that the right-hand side simplifies as follows:

(n+ 1)3 +
n2(n+ 1)2

4
= (n+ 1)2

[
(n+ 1) +

n2

4

]
=

(n+ 1)2(n2 + 4n+ 4)

4

=
(n+ 1)2(n+ 2)2

4
.

Consequently, if the indicated equation holds for a certain natural num-
ber n, then the equation holds for the successor number.

By induction, the equation holds for every natural number.

7. Prove that
{
n sin

(
1
n

)}∞
n=1

is a Cauchy sequence.

Solution. The indicated sequence is a sequence of real numbers, so an
equivalent statement is that the sequence has a limit. You know from
class or by l’Hôpital’s rule that

lim
x→0

sin(x)

x
= 1.

Letting x approach 0 along the sequence {1/n}∞n=1 shows that

lim
n→∞

sin(1/n)

1/n
= 1, or lim

n→∞
n sin(1/n) = 1.

Thus the indicated sequence not only converges but has limit 1.

May 7, 2010 Page 3 of 5 Dr. Boas



Math 409 Final Exam

Advanced Calculus I
Spring 2010

8. Define f : (0,∞) → (0,∞) by setting f(x) equal to xex for each positive
real number x. Prove that f has an inverse function, and evaluate the
derivative (f−1)′(e).

Solution. Since f ′(x) = xex + ex > 0 when x > 0, the function f
is strictly increasing, hence one-to-one. Moreover, limx→∞ f(x) = ∞,
and limx→0 f(x) = 0. By the intermediate-value theorem, the range of
the continuous function f is all of (0,∞). Being both one-to-one and
onto, the function f has an inverse.

By inspection, f(1) = e, so the theorem about differentiating an inverse
function shows that

(f−1)′(e) =
1

f ′(1)
=

1

2e
.

9. Let an equal

∫ n

1

sin(x)√
x

dx for each natural number n. Prove that

limn→∞ an exists.

Solution. The key idea is to integrate by parts:

an =
− cos(n)√

n
+ cos(1)− 1

2

∫ n

1

cos(x)

x3/2
dx.

Now | − cos(n)/
√
n | ≤ 1/

√
n → 0 as n → ∞, so the first term on the

right-hand side has a limit by the sandwich theorem. The second term
is constant, so what remains to show is that

lim
n→∞

∫ n

1

cos(x)

x3/2
dx exists,

or equivalently that{∫ n

1

cos(x)

x3/2
dx

}∞

n=1

is a Cauchy sequence.

If m < n, then∣∣∣∣∫ n

1

cos(x)

x3/2
dx−

∫ m

1

cos(x)

x3/2
dx

∣∣∣∣ = ∣∣∣∣∫ n

m

cos(x)

x3/2
dx

∣∣∣∣ ≤ ∫ n

m

∣∣∣∣cos(x)x3/2

∣∣∣∣ dx
≤

∫ n

m

1

x3/2
dx = 2

(
1√
m

− 1√
n

)
.
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If a positive ε is prescribed, then the right-hand side will certainly be
less than ε when m > 4/ε2. Consequently, the indicated sequence of
integrals is a Cauchy sequence.
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