
Math 409 Advanced Calculus
Final Examination

Spring 2015

Please write your solutions on your own paper. These problems should be treated as essay
questions to answer in complete sentences.

Students in Section 501 should answer questions 1–6 in Parts A and B, and optionally the
extra-credit question 10 in Part D.

Students in Section 200 should answer questions 1–3 in Part A and questions 7–9 in Part C,
and optionally the extra-credit question 10 in Part D.

Part A, for both Section 501 and Section 200

1. Consider a function f defined as follows:

f (x) = 409x − x409 when 0 < x < 2.

Does the function f attain a maximum on the open interval (0, 2)? What about a minimum?
Why or why not?

Solution. The extreme-value theorem implies that the continuous function f attains both a
maximum and a minimum on the closed bounded interval [0, 2]. Accordingly, the question
reduces to deciding whether an extreme value occurs at an endpoint.
Now f ′(x) = 409− 409x408 = 409(1 − x408), so f ′(x) > 0 when 0 < x < 1, and f ′(x) < 0
when 1 < x < 2. Therefore the function f increases on the interval (0, 1) and decreases
on the interval (1, 2). Consequently, the function f attains an absolute maximum on the
interval (0, 2) at the midpoint. On the other hand, the minimum on the interval [0, 2] is
taken at an endpoint (actually the right-hand endpoint): there is no minimum on the open
interval (0, 2).

2. Consider a sequence {xn} of real numbers defined recursively as follows:

x1 = 1, and xn+1 =
409 + xn

2
when n ≥ 1.

Does lim
n→∞

xn exist? Explain why or why not.

Solution. Method 1. Prove by induction that the sequence is increasing and bounded
above. The completeness property of the real numbers then implies that the sequence con-
verges to the least upper bound.
To prove by induction that the sequence is bounded above by 409, first observe that the
initial term x1 is less than 409, so the basis step is valid. Supposing now for some natural
number k that xk < 409, you can deduce that

xk+1 =
409 + xk

2
< 409 + 409

2
= 409.
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Thus the hypothesis that xk < 409 implies the conclusion that xk+1 < 409, so the induction
step is valid.
There are two ways to prove that the sequence is increasing, equivalently, that xn+1−xn > 0
for every natural number n. One way is to observe that

xn+1 − xn =
409 + xn

2
− xn =

409 − xn

2
,

and this expression is positive because xn < 409 (by the previous step). Alternatively,
you could prove by induction that the sequence is increasing, as follows. First observe that
x2 = 409+1

2
= 205 > 1 = x1, so the basis step is valid. Supposing now for some natural

number k that xk+1 > xk, you can deduce that

xk+2 =
409 + xk+1

2
>

409 + xk

2
= xk+1.

Thus the hypothesis that xk+1 > xk implies the conclusion that xk+2 > xk+1, so the induction
step is valid.
In summary, mathematical induction implies that the sequence is bounded and increasing.
The theorem on monotone convergence yields that the sequence converges. (The limit of
the sequence turns out to be 409, which is the least upper bound of the sequence.)
Method 2. If the sequence does converge to a limit L, then L must satisfy the following
equation:

L = 409 + L
2

.

Therefore the only possible candidate for a limit L is 409. Additional work is required to
demonstrate that the sequence really does converge to this conjectural limit.
Showing that xn converges to 409 is equivalent to showing that xn−409 converges to zero,
so studying this difference is a natural idea. Observe that

xn − 409 =
409 + xn−1

2
− 409 = 1

2
(

xn−1 − 409
)

when n > 1.

A straightforward induction argument then shows that

xn − 409 = 1
2n−1

(

x1 − 409
)

for every natural number n. But x1 = 1, so

xn = 409 − 408
2n−1

.

Since 1∕2n−1 → 0 when n → ∞, this explicit formula for the general term xn confirms the
conjecture that xn → 409.
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3. Consider the following three properties that a function f might or might not have:
(C) f is continuous on the interval [0, 2].
(D) f is differentiable on the interval [0, 2].
(I) f is Riemann integrable on the interval [0, 2].

There are six possible implications between these properties: (C) ⇐⇒ (D); (D) ⇐⇒ (C);
(C) ⇐⇒ (I); (I) ⇐⇒ (C); (D) ⇐⇒ (I); (I) ⇐⇒ (D). Which implications are valid? Why? For the
implications that are not valid, give counterexamples.

Solution. A continuous function need not be differentiable; a standard counterexample is
the absolute-value function |x−1|, a continuous function that fails to be differentiable when
x = 1. On the other hand, a theorem says that every differentiable function is continuous.
A theorem says that every continuous function is Riemann integrable. On the other hand, a
step function (the ceiling function, for example) is Riemann integrable but not continuous.
A differentiable function is continuous and hence Riemann integrable. On the other hand,
the preceding example shows that an integrable function need not be continuous and hence
need not be differentiable.

Part B, for Section 501 only

4. State the following theorems:
a) l’Hôpital’s rule (some version);
b) the fundamental theorem of calculus (relating derivatives and integrals);
c) some (other) theorem from this course that involves the concept of compactness.

Solution. Various versions of l’Hôpital’s rule are stated in Section 7.11 in the textbook. The
two halves of the fundamental theorem of calculus are statements 8.8 and 8.9 in section 8.3
of the textbook; more general versions for the Riemann integral are statements 8.26 and 8.27
in Section 8.7. Some theorems having to do with compactness are the Bolzano–Weierstrass
theorem, the Heine–Borel theorem, the characterization of compact subsets ofℝ as the sets
that are both closed and bounded, and the extreme-value theorem (a continuous function
on a compact set attains a maximum and a minimum).

5. Prove that 2n ≥ 2n for every natural number n.

Solution. Method 1. The statement can be proved by induction. When n = 1, both sides
of the inequality are equal to 2, so the basis step is valid. Supposing now that 2k ≥ 2k for
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some natural number k, you can deduce that

2k+1 = 2 ⋅ 2k (by definition of exponentiation)
≥ 2 ⋅ 2k (by the induction hypothesis)
= 2k + 2k (by definition of multiplication)
≥ 2k + 2 (because k ≥ 1)
= 2(k + 1).

Thus the hypothesis that 2k ≥ 2k implies the conclusion that 2k+1 ≥ 2(k + 1), so the in-
duction step is valid. Therefore mathematical induction implies that the required inequality
holds for every natural number.
Method 2. The inequality evidently holds (actually with equality) when n = 1 and when
n = 2. Calculus techniques can be used as follows to show that 2x exceeds 2x when the
real number x exceeds 2, a conclusion even stronger that what is required.
Let f (x) denote 2x. The points (1, 2) and (2, 4) on the graph of f are joined by a chord of
slope 2. The mean-value theorem implies that f ′(c) = 2 for some value of c between 1
and 2. Since the exponential function f is convex (that is, has increasing derivative), the
value of f ′(x) exceeds 2when x exceeds 2. Consequently, the function 2x−2x has positive
derivative when x > 2, and this function has value 0 when x = 2. Thus when x ≥ 2, the
function 2x − 2x increases starting from the value 0, so 2x − 2x > 0 when x > 2.
Natural numbers are, in particular, real numbers, so the preceding conclusion implies that
2n > 2n when n > 2.

6. Give an example of a continuous function f ∶ ℝ → ℝ such that lim
x→∞

f (x) = 0, yet

lim
x→∞∫

x

1
f (t) dt = ∞.

Solution. Here is one example:

f (x) =

{

1, when x < 1,
1
x
, when x ≥ 1.

Evidently, limx→∞ f (x) = 0. Moreover,

∫

x

1
f (t) dt = ∫

x

1

1
t
dt = log(x) − log(1) = log(x),

and limx→∞ log(x) = ∞.
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Part C, for Section 200 only

7. State the following theorems:
a) some theorem from this course named after a European mathematician whose name

begins with the letter “C”;
b) some (other) theorem from this course that involves the concept of a covering by open

sets or by closed sets;
c) some (other) theorem from this course that involves the intermediate-value property

(Darboux property).

Solution. Some “C” theorems are Cantor’s theorem about uncountability of the real num-
bers, Cantor’s theorem about nested sets, Cauchy’s criterion for convergence, Cauchy’s
mean-value theorem, Cauchy’s construction of an integral, and Cousin’s covering lemma.
Some theorems involving coverings are Cousin’s lemma, the Heine–Borel theorem (which
characterizes compactness through open covers), and Lebesgue’s characterization of the
functions that are Riemann integrable (the concept of measure zero involves a covering by
open intervals).
Two theorems about the intermediate-value property are that every continuous function has
the property and that every derivative has the property.

8. Prove that 2n ≥ n2 for every natural number n larger than 3.

Solution. Method 1. The statement can be proved by induction. Evidently, equality holds
when n = 4, which is the basis step. Suppose now that 2k ≥ k2 for some natural number k
larger than 3. Then

2k+1 = 2 ⋅ 2k (by definition of exponentiation)
≥ 2 ⋅ k2 (by the induction hypothesis)
= k2 + k2 (by definition of multiplication)
> k2 + 3k (because k > 3)
= k2 + 2k + k (by definition of multiplication)
> k2 + 2k + 1 (because k > 1)
= (k + 1)2.

Thus the hypothesis that 2k ≥ k2 implies the conclusion that 2k+1 ≥ (k + 1)2, which is
the induction step. Therefore mathematical induction implies that the required inequality
holds for every natural number larger than 3.
Method 2. Calculus techniques can be used as follows to show that 2x exceeds x2 when
the real number x exceeds 4, a conclusion even stronger that what is required. (Equality
evidently holds when x = 4.)
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To say that 2x > x2 when x > 4 is equivalent to saying that x log 2 > 2 log x when x > 4
(because the natural logarithm function is increasing). Let f (x) denote x log 2 − 2 log x
when x > 0. Then f ′(x) = log 2− 2

x
, so f ′(x) > log 2− 1

2
when x > 4. If you have in your

head that log 2 is about 0.69, then you can see immediately that log 2 − 1
2
> 0. Otherwise,

you can say that log 2 − 1
2
= 1

2
(2 log 2 − 1) = 1

2
(log 4 − 1), and now you can see that this

expression is positive because log 4 > 1 (since 4 > e). Since the derivative f ′(x) is positive
when x > 4, the function f (x) is increasing when x > 4. But f (4) = 0, so f (x) > 0 when
x > 4.
Natural numbers are, in particular, real numbers, so the preceding conclusion implies that
2n > n2 when n > 4.

9. Give an example of a bounded function f on the interval [0, 1] such that lim
x→0+

f (x) does not

exist, yet lim
x→0+∫

1

x
f (t) dt does exist.

Solution. One concrete example is the (discontinuous) function that is equal to 1when x is
the reciprocal of a natural number and equal to 0 otherwise. Evidently lim supx→0+ f (x) =
1, and lim infx→0+ f (x) = 0, so limx→0+ f (x) does not exist. When x > 0, the func-
tion f has only a finite number of discontinuities in the interval [x, 1], so the Riemann
integral ∫ 1

x f (t) dt certainly exists. The lower sum for an arbitrary partition is equal to 0,
so the existence of the integral implies that the value of the integral must be 0. Therefore
limx→0+ ∫

1
x f (t) dt exists and equals 0.

There are many other examples, such as sin(1∕x). In fact, if f is an arbitrary bounded
function that is Riemann integrable on the interval [0, 1], then limx→0+ ∫

1
x f (t) dt exists

and equals ∫ 1
0 f (t) dt. The reason is that

|

|

|

|

∫

1

0
f (t) dt − ∫

1

x
f (t) dt

|

|

|

|

=
|

|

|

|

∫

x

0
f (t) dt

|

|

|

|

,

and the right-hand side is bounded above by x times an upper bound for |f |, hence tends
to 0 when x tends to 0. Therefore an arbitrary bounded function that is Riemann integrable
on [0, 1] but discontinuous from the right at 0 serves as an example.

Part D, optional extra-credit question for both Section
200 and Section 501

10. Write an essay on the following topic: What is the most important concept or principle or
theorem from this course? Why?

Solution. There is no single right answer to this question. The goal is to make a reasoned
argument with supporting evidence to justify your choice.
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