Announcement

Math Club Meeting
Tuesday, April 18th, 2017
Blocker 220
7:00-8:00 PM

Agenda:

- officer elections
- food
- a talk by Dr. Florent Baudier

Three ways of looking at the derivative

Suppose $f: I \rightarrow \mathbb{R}$ is a function whose domain is an open interval l, and c is a point in I.
There are three equivalent ways to define the derivative $f^{\prime}(c)$:

1. using limits
2. leveraging the notion of continuity
3. formalizing the geometric picture
(Nothing essential changes if I is a closed interval, and c is an endpoint. The concept then is a one-sided derivative.)

Definition of the derivative using limits

The function f is differentiable at the point c if and only if

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \quad \text { exists, }
$$

in which case the value of the limit is called the derivative, denoted by $f^{\prime}(c)$.
Replacing x by $c+h$ yields the equivalent formulation that

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}
$$

if this limit exists.

Definition of the derivative using continuity

The function f is differentiable at c if and only if there exists a function A, continuous at c, such that $f(x)=A(x)(x-c)+f(c)$. And $f^{\prime}(c)=A(c)$.

The only thing $A(x)$ can be when $x \neq c$ is the fraction

$$
\frac{f(x)-f(c)}{x-c}
$$

To say that A is continuous at c means precisely that this fraction has a limit when $x \rightarrow c$, and the value of the limit is $A(c)$.

Definition of the derivative using geometry

The function f has a tangent line at c when there is a "best linear approximation," that is, a linear function T such that

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)-T(h)}{h}=0
$$

What $T(h)$ has to be is $f^{\prime}(c) h$.
(In higher dimensions, the right way to think about the derivative is not as a number but as a linear transformation.)

Confirming some prior knowledge

Example

If P is a polynomial, then P is differentiable at every real number c.

Proof.

From algebra, the difference $P(x)-P(c)$ is divisible by $(x-c)$: namely, there is a polyomial $Q(x)$ such that $P(x)-P(c)=(x-c) Q(x)$. Since polynomials are continuous functions, the second definition of differentiability shows that P is differentiable at c, and $P^{\prime}(c)=Q(c)$.

Some fancier examples

Are the following functions differentiable at 0 ?

1. $f(x)=x|x|$
2. $g(x)= \begin{cases}x \sin (1 / x), & \text { if } x \neq 0, \\ 0, & \text { if } x=0 .\end{cases}$
3. $h(x)= \begin{cases}x^{2} \sin (1 / x), & \text { if } x \neq 0, \\ 0, & \text { if } x=0 .\end{cases}$
4. $k(x)= \begin{cases}x^{2}, & \text { if } x \in \mathbb{Q}, \\ 0, & \text { if } x \notin \mathbb{Q} .\end{cases}$

Answer: yes for f, h, and k, but no for g.

