Reminder

The comprehensive final examination takes place on Thursday, May 4, from 12:30 to 2:30 in the afternoon, here in this room.

Warm-up on derivatives

Example (\#8 on page 134)

Let $f:[1,3] \rightarrow \mathbb{R}$ be a continuous function that is differentiable on $(1,3)$ with derivative $f^{\prime}(x)=[f(x)]^{2}+4$ for all $x \in(1,3)$. True or false (explain): $f(3)-f(1)=5$.
Mean-value theorem implies the existence of a point c for which

$$
\frac{5}{2}=\frac{f(3)-f(1)}{3-1}=f^{\prime}(c) \geq 4
$$

which is a contradiction.

Warm-up on area

Example

How could pre-Newtonian mathematicians find the area under a parabola?

An upper bound for the area

For n rectangles of equal width, the upper bound for the area equals

$$
\sum_{i=1}^{n} \text { width } \times \text { height }=\sum_{i=1}^{n} \frac{1}{n} \times\left(\frac{i}{n}\right)^{2}
$$

A lower bound for the area

For n rectangles of equal width, the lower bound for the area equals

$$
\sum_{i=0}^{n-1} \text { width } \times \text { height }=\sum_{i=0}^{n-1} \frac{1}{n} \times\left(\frac{i}{n}\right)^{2}
$$

The separation between upper and lower bounds

$$
\text { upper bound }- \text { lower bound }=\frac{1}{n}\left[\left(\frac{n}{n}\right)^{2}-\left(\frac{0}{n}\right)^{2}\right]=\frac{1}{n}
$$

So the area is approximated within ε by either the upper bound or the lower bound as soon as $n>1 / \varepsilon$.

Exact computation of the area

$$
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}\left(\frac{i}{n}\right)^{2}=\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{i=1}^{n} i^{2}
$$

Mathematical induction shows that $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$, so

$$
\text { Area }=\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{6 n^{3}}=\frac{1}{3}
$$

Example

$f(x)= \begin{cases}1, & \text { if } x \in \mathbb{Q}, \\ 0, & \text { if } x \notin \mathbb{Q} .\end{cases}$
Interval [0, 1]:
Here the upper bound is always 1 and the lower bound is always 0 , so the approximation scheme fails in this example.

