Reminder

The comprehensive final examination takes place on Thursday, May 4, from 12:30 to 2:30 in the afternoon, here in this room.

Warm-up on derivatives

Example (#8 on page 134)

Let $f: [1,3] \to \mathbb{R}$ be a continuous function that is differentiable on (1,3) with derivative $f'(x) = [f(x)]^2 + 4$ for all $x \in (1,3)$. True or false (explain): f(3) - f(1) = 5.

Mean-value theorem implies the existence of a point c for which

$$\frac{5}{2} = \frac{f(3) - f(1)}{3 - 1} = f'(c) \ge 4$$

which is a contradiction.

Warm-up on area

Example

How could pre-Newtonian mathematicians find the area under a parabola?

An upper bound for the area

For n rectangles of equal width, the upper bound for the area equals

$$\sum_{i=1}^{n} \text{width} \times \text{height} = \sum_{i=1}^{n} \frac{1}{n} \times \left(\frac{i}{n}\right)^{2}$$

A lower bound for the area

For n rectangles of equal width, the lower bound for the area equals

$$\sum_{i=0}^{n-1} \text{width} \times \text{height} = \sum_{i=0}^{n-1} \frac{1}{n} \times \left(\frac{i}{n}\right)^2$$

The separation between upper and lower bounds

upper bound – lower bound =
$$\frac{1}{n} \left[\left(\frac{n}{n} \right)^2 - \left(\frac{0}{n} \right)^2 \right] = \frac{1}{n}$$

So the area is approximated within ε by either the upper bound or the lower bound as soon as $n > 1/\varepsilon$.

Exact computation of the area

Area =
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{i}{n}\right)^2 = \lim_{n \to \infty} \frac{1}{n^3} \sum_{i=1}^{n} i^2$$

Mathematical induction shows that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$, so

Area =
$$\lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3} = \frac{1}{3}.$$

Example

$$f(x) = egin{cases} 1, & ext{if } x \in \mathbb{Q}, \ 0, & ext{if } x
otin \mathbb{Q}. \end{cases}$$
Interval $[0, 1]$:

Here the upper bound is always 1 and the lower bound is always 0, so the approximation scheme fails in this example.