Homology version of Cauchy's theorem

Winding number $n(8;a) = \frac{1}{2\pi i} \int_{\mathcal{X}} \frac{1}{z-a} dz$

If f is analytic in a region, and γ is a closed curve in the region whose winding number about every point in the complement of the region is zero, then

$$\int_{\gamma} f(z) dz = 0, \quad \text{and}$$

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} dz = n(\gamma; a) f(a)$$
In particular, hypothesis helds for simply cannected regions.

Title: Nov 12 (Page 1 of 3)

g(w,
$$\pm$$
) = $\left(\frac{f(z)-f(w)}{2-w}\right)$ if $z \neq w$
 $\left(\frac{f'(w)}{2-w}\right)$ if $z = w$

Check continuity when (w, \pm) is close to $(0,0)$.

 $f(z) = \sum_{i=0}^{n} c_n z^n$

with some values of convergence R .

If $z \neq w$, then $z = c_n (z^n - w^n)$
 $= \sum_{i=0}^{n} c_n (z^n - w^n)$
 $= \sum_{i=0}^{n} c_n p_i(w, z)$

where $p_i(w, z) = z^{n-1} + z^{n-2}w + \cdots + w^{n-2}z + w^{n-1}$

Observe $p_i(w, w) = h(w) = g(w, w)$.

So if $\sum_{i=0}^{n} c_n p_i(w, \pm) = c_n v_{enge}$;

uniformly for t and w in a neighborhood of t , then t is continuous at $(0, t)$.

Restrict t , t to satisfy $|z| \leq t < R$

Then $|p_i(w, z)| \leq h \cdot r^{n-1}$

So $|c_n p_n(w, z)| \leq |c_n| n \cdot r^{n-1}$

These terms are the terms of an absolutely convergent series: hamely, the series t for $t'(v)$.

Title: Nov 12-2:44 PM (Page 2 of 3)

Page 87

7. Let $\gamma(t) = 1 + e^{it}$ for $0 \le t \le 2\pi$. Find $\int_{\gamma} \left(\frac{z}{z-1}\right)^n dz$ for all positive integers n.

Page 100

- 4. Suppose that $f: G \to \mathbb{C}$ is analytic and one-one; show that $f'(z) \neq 0$ for any z in G.
- 6. Let $P: \mathbb{C} \to \mathbb{R}$ be defined by P(z) = Re z; show that P is an open map but is not a closed map. (Hint: Consider the set $F = \{z : \text{Im } z = (\text{Re } z)^{-1} \text{ and } \text{Re } z \neq 0\}$.)

Title: Nov 12 (Page 3 of 3)