$\log (z)$ should be an inverse of e^{z} but e^{z} is not are-to-ane.
A branch of $\log (z)$ means
(i) some open subset of \mathbb{C}, and
(ii) some analyse function, an that set such that $e^{f(z)}=z$.
If $f(x)$ exists, then

$$
e^{f(z)}=z=r e^{i \theta}=e^{\ln r+i \theta}
$$

So the candidate for $\log (z)$ is $\ln |z|+i \arg (z)$.
A priories $\arg (z)$ is ambiguous up to addition of $2 \pi n$ for some integer n.

Title : Nov 17 (Page 1 of 5)

Examples of regions where θ can be defined continuously
\qquad

$$
\begin{aligned}
& \text { principal branch } \\
& \text { of } \log (z) \text { is } \\
& \ln |z|+i \arg (z) \\
& \text { with } \\
& -\pi<\arg (z)<\pi
\end{aligned}
$$

principal value: $-\pi<\theta<\pi$

θ continuous but unbounded

Proposition If operset G is simply connected, and $O \notin G$, then a branch of $\log (z)$ can be defined on G.
Why? Define

$$
f(z)=\int_{z_{0}}^{z} \frac{1}{w} d w
$$

path-independent integral because of version of Cauchy's theorem from last week. And $f^{\prime}(z)=\frac{1}{z}$
What do we know about $e^{f(z)}$?
Examine $z \cdot e^{-f(z)}$. Derivative is

$$
1 \cdot e^{-f(z)}+z \cdot e^{-f(z)} \cdot\left(-f^{\prime}(z)\right)
$$

or $e^{-f(z)}-e^{-f(z)}=0$.

$$
\begin{aligned}
\text { So } z e^{-f(z)}=c & \quad \text { constant), } \\
\text { o } \quad & =c \cdot e^{+f(z)} \\
& =e^{k} \cdot e^{f(z)} \quad \text { for some } \\
& \text { constant } k .
\end{aligned}
$$

So $k+f(z)$ is a branch of $\log (z)$ in G.

Title : Nov 17 (Page 3 of 5)

More generally, given an analytic function $f(z)$, a domain is there an analytic function $g(z)$ such that $e^{g(z)}=f(z)$? [that is, $g=\log f$]
subtle point: $\log f$ does not necessarily mean log of.
If $f(z)$ has zeroes, then no $g(z)$ can exist. If the region is simply connected, then this obstruction is the only one: namely, if f has no zeroes in a simply connected region, then there is g such that $e^{g}=f$.
Proof Define $g(z)$ to be

$$
\int_{z_{0}}^{z} \frac{f^{\prime}(w)}{f(w)} d w+C \text { and }
$$

mimic the previous proof.
21. Prove that there is no branch of the logarithm defined on $G=\mathbb{C}-\{0\}$.

