Mean-value theorem on real lino:

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

for some c between a and b.
Counterexample in C :

$$
0=e^{2 \pi i}-e^{0} \stackrel{?}{=} \text { (derivative at inter posciate } \text { pout times } 2 \pi i-0 \text { ? }
$$

Example Determine $\frac{f^{\prime}(z)}{f(z)}$ when $f(z)=\frac{(z-1)(z-2)}{(z-3)(z-4)}$.
Locally on a small disk not antaining 1,2,3, or 4, we can be fine a branch of $\log f(z)$

$$
\begin{gathered}
=\log (z-1)+\log (z-2)-\log (z-3) \\
-\log (z-4)+2 \pi i \cdot k
\end{gathered}
$$

for some integer k.
Differentiate the get

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{1}{z-1}+\frac{1}{z-2}-\frac{1}{z-3}-\frac{1}{z-4} .
$$

Theorem. Suppose f is analytic in a region G except for some poles, and let γ be a simple closed counterclockwise curve that has zero winding number around each point in $\mathbb{C} \backslash G$. Then $\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=(\#$ zeroes $)-(\#$ poles $) \quad$ inside γ.
(counted according to multiplicity s
[implicit assumption that no zeroes or poles lie e on γ]

$$
\begin{aligned}
& =\frac{1}{2 \pi i} \sum_{j}\left[\ln |w|+i \operatorname{avg} g_{j}(w)\right]_{\text {start ont }}^{\text {infoint }} \\
& \begin{array}{l}
\text { Real part of log gives a } \\
\text { telescoping sum that equals } 0 \text {. }
\end{array} \\
& \text { telescoping sum that equals } 0 \text {. } \\
& \frac{1}{2 \pi} \text {. net change in } \arg (w) \\
& \text { around the curve } \gamma \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mare generally } \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z \\
& =\frac{1}{2 \pi i} \int_{C=f(\gamma)} \frac{1}{w} d w \quad \text { via } w=f(z) \\
& \text { times change in argument } \\
& \text { fl) as } z \text { traverses } \gamma
\end{aligned}
$$

5. When the variable z is restricted to the first quadrant (where $\operatorname{Re} z>0$ and $\operatorname{Im} z>0$), how many zeroes does the polynomial $z^{2015}+8 z^{12}+1$ have?

January 2013 qualifying examination
7. Prove that every complex number is in the range of the entire function $e^{3 z}+e^{2 z}$.

August 2012 qualifying examination
 elliptic functions
3. Let f be a meromorphic function in \mathbb{C}. Suppose that f is doubly periodic, i.e. that for $\$ \delta$ mé non-zero numbers $a, b \in \mathbb{C}$,

$$
f(z)=f(z+a) \text { and } f(z)=f(z+b)
$$

for any $z \in \mathbb{C}$. Consider the parallelogram P with sides $(0, a)$ and $(0, b)$. Assuming that f does not have any zeros or poles on the sides of P, prove that the number of zeros of f in P is equal to the number of poles of f in P.

